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Summar 

This report describes the status of an on-going effort by the NASA Lewis Research Center
and Aerojet Propulsion Division to develop software capable of detecting sensor failures on
liquid rocket engines in real time, and with a high degree of confidence. This software
could be used in a rocket engine controller to prevent the erroneous shutdown of an engine
due to sensor failures which would otherwise be interpreted as engine failures by the
control software.

The approach taken combines analytic redundancy with Bayesian belief networks to
provide a solution which has well-defined real-time characteristics, well-defined error rates,
and is scaleable to validate any number of engine sensors. Analytical redundancy is a
technique in which a sensor's value is predicted by using values from other, usually non-
redundant, sensors and known or empirically derived mathematical relations. For example,
given the engine plant diagram in Figure 1, fuel flow can be related to either the low
pressure pump speed or the high pressure pump speed by a pump affinity equation
(assuming constant fuel density). As shown, a set of sensors and a set relationships among
them form a network of cross-checks which can be used to periodically validate all of the
sensors in the network. Bayesian belief networks provide a mathematically sound method
of determining if each of the sensors in the network is valid, given the results of all of these
cross-checks.

Figure 1. Example Engine Plant Diagram and
Partial Sensor Validation Network

This approach has been codified in an algorithm which has been successfully demonstrated
on a rocket engine controller in real-time on the Technology Test Bed. En.gine at the NASA
Marshall Space Flight Center. Current efforts are focused on extending me oemonstrauon
systemto provide a real-time validation capability for approximately 100 sensors on the
Space Shuttle Main Engine.



I. Introduction
The safety and reliability of rocket engi.n,es would be enhanced if engine controllers and
advanced safety systems could determine if sensors were supplying faulty data. This
ability, termed sensor data validation, could prevent the controller or safety system from
making critical decisions, such as the decision to shut an engine down, on the basis of data
from anomalous or failed sensors.

An approach to validating sensors in real-time has been developed and demonstrated on the
Technology Test Bed Engine (TTBE) at the NASA Marshall Space Fright Center (MSFC).
The demonstration system validated six channels of sensor data in real-time, running on a
state-of-the-art engine controller.

The current effort involves extending the demonstration system in the following ways:
• The number of sensors validated will be increased fi'om six to approximately 97.
• The system will monitor continuously during mainstage (the first demonstration

system only operated during steady-state intervals). , .
• Hard failures in control and redline sensors will be detected before me engine

controller responds.
• As an option, the system will monitor control and redline sensors during the engine

startup transient.
The extended system will be implemented on a 4.86PC in the Techn_ogy Te_ B_ (TTB)
blockhouse which receives data in real-time dunng TrBE firings, lne completeo system
will be validated on at least 20 engine firings.

This report describes the status of an on-going effort by the NASA Lewis Research Center
(LeRC) and Aerojet Propulsion Division (APD) to develop a software solution to the
sensor data validation problem capable of running in a ground test computer or rocket

engine controller. A program plan is then pre_.sentedin det_lDfor continuation of this work
by Aerojet in FY93-FY95 on the Real-Time sensor ata Validation task of the
Development of Life Prediction Capabilities for Liquid propulsion Rocket Engines
CoaWacLThis project is being funded by the NASA OACT ETO pmgran_

If. Pro__ram Status
Efforts to develop an approach to real-time sensor data validation (SDV) for fiquid rocket

en_,ines have evolved over four years (see Figure 2), from conceptual design (FY90) to
sonware implementation and test in a rocket engine controller on the TrB test stand
(FY92). More recent efforts have f_usecl.on scaling.up the capability demonstrated on
TrB to validate the majority of controt aria neatm momtonng sensors on the Space Shuttle
Main Engine (SSME).

H.1. System Architecture Studw
In FY90 a System Architecture Study of SDV was performed by Aerojet which reviewed
common sensor failure modes on the SSME, the data validation process used by SSME
data analysts at MSFC, and a number of alternative approaches to automating SDV for

post-test/post-flight data analysis. 1

The approaches to SDV reviewed included range and rate limit checking2,3, various

pattern-matching techniques 4-9, and analytical redundancy 10-12. The conclusion of this
study was that no single algorithmic method should be used for SDV; rather several
methods should be used to analyze sensor data and the results integrated or'_. sed" in_ a
final conclusion regarding the integrity of each.sensor_See.era1 approaches m _. orn]au0n
fusion were also reviewed for their applicability to SL_V, mcmomg omary toglc, aa-noc
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Figure 2. Real.Time Sensor Data Validation Program History

certainty factors 13, Dempster-Shafer theory 14, and Bayesian belief networks 15.

Bayesian belief networks were selected as the best strategy, since they were believed to be
the most mathematically sound approach to information fusion.

H.2. Probabilistie Annroach to Analytical Redundanc_
Real-dine sensor data validation was targeted as a demonstrauon application for APD's

Advanced Rocket Engine Controller (AREC), developed on APD's Integrated Controls and

Health Management IR&D in FY91 (Project .AMI_I-03).._e. approach tak.cn comb'm.ed
analytical redundancy with Bayesian information fur"on .t%'nmques _ acmeve a sotu.non
which has well-understood false alarm and missed detection error rates, operates wxmm

hard time constraints, and is _aleable to valida_ any number of sensors. 16

Analytical redundancy is a technique in which a sensor's value is predicted by using
values from other, usually non-redundant, sensors and known or empiricaUy derived
relations among the sensor values. For example, Figure 3 shows a relation among three
sensor values using a standard formula for fluid line resistance. Relations can also be

empirically derived using standard statistical m .gression technique. The simplest f_rm of
these empirical relations is a linear equation retaung two sensor values, as shown m gure
4. In general, a relation is used to provide validation information for all related sensors.

3



_A-PB =_

]Flow2

Figure 3. Example Characteristic Relation

Y=aX+_

Figure 4. Example Statistical Relation

A group of sensors and a set of relations among them define a network. Figure 5 shows a
very simple example of a sensor validation network for three parametea's on the SSME.

The difference between a value predicted using a relation and a directly sens.ed value is
called a residual, and is a measure of the quality of the relation, given that me sensors
involved are known to be working properly. In the approach taken in this work, one or
more algebraic relations are def'med for every sensor in the network which relate its value !o
the values of one or more other sensors in the network. The mean and standard deviation
of the relation residuals (evaluated on normal engine test firing data) are also computed.

I i ile iii!iii i!i! iii!i!i!iiiiiill
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Figure 5. Example Sensor Validation Network
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Given this information, a validation algorithm could sample sensor values every controner
cycle during an engine firing and determine if each of the relations holds or not by
thresholding on a particular residual, such as three standard deviations. Once the status of
every relation in the network has been determined to either "hold" or "not hold", the
validation algorithm makes a conclusion about the validity of each sensor in the network
(the one-cycle decision problem). Conclusions made during several consecutive controller
cycles may be fused together in order to disqualify a sensor (the multi-cycle decision
problem). Figure 6 summarizes this overall approach.

Start of

Coutroner

Cycle

Evaluate
Relations

Involving
Sensor

Decide if Sensor
has Failed This

Cycle

Decide if Sensor
Should be

Disqualified Based
ea Last N Cycles

Sensor

Qualification

Figure 6. Overall Approach to Real.Time Sensor Data Validation

Before this general approach could be implemented, several questions needed to be
answered:

• How many relations are needed to validate a sensor?
• How many of a sensor's relations need to hold in order to validate the sensor during

one conu'oller cycle?
• What threshold should be used on the individual relation residual tests?

• Should sensor value averaging or other multi-cycle strategies be used?
• Can a scaleable approach to validation be developed which will work with any

number of sensors?

• Do all relations need to be evaluated every cycle to validate all sensors?

Bayesian Analysis
Bayesian probability theory provides a formal framework within which the questions posed
above can be answered. Bayesian probability theory provides a mathematically sound
approach to the problem of information fusion -- the combination of evidence from
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several sources into a single, consistent model. In information fusion, uncertainties in the
sources of evidence (i.e., inaccuracies in the sensors or uncertainties in the fault detection

algorithms themselves) are explicitly modeled and accounted for.

A Bayesian Belief Network is a graphical representation of a joint probability distribution
Of a set of random variables. 15,17,15 As an example, the validation network shown in

Figure 5 can be represented as the Belief Network shown in Figure 7. In this network, the
nodes S 1, $2, and $3 represent the status of the respective sensors (i.e. whether they are
working or no0, while the nodes R1, P.2, and R3 represent whether an analytical
redundancy relationship currently holds between the sensors or not. Connections in the
network represent influences between variables. In Figure 5, for example, a failure in
sensor S1 would influence the expected probability distribution on the status of relation

R1.

1:12

(Holds or Not)

R3
(Holds or Not)

Figure 7. Example Sensor Validation Network Cast into a Bayesian Belief
Network for Analysis

Given the Belief Network shown in Figure 7, the probability of each sensor being valid

given the current status of all relations can be derived. These equations can then be used to
answer the questions posed above, and to develop a mathematically sound approach to
sensor data validation.

The following assumptions were made in

Bayesian analysis:
o

the FY91 activity in order to conduct the

Although several sensors may fail during a firing, two sensors cannot fail during a
single controller cycle. The likelihood of two or more sensors initiating a failure at
the same instant in time is very remote, and it would .gr_y.complicate the validation

system to accommodate such simultaneous muluple-pomt failures.
Once a sensor is determined to have failed, it will stay failed and will not be used

again in any future calculations.
The reliability of a sensor can be det_ed from its Mean Time Between Failure
(MTBF). _ measure is assumed to be constant for the duration of a single engine

firing.
When a sensor fails it emits random values. This is a very conservative assumption,
and is a more difficult failure mode to detect than a hard failure (i.e., if the algorithm
is able detect the random failure mode with a high degree of confidence, it will also be
able to detect hard and drift failures). This is an admission that a failed sensor has

6



some small probability of emitting a value which is within the realm of
"reasonableness" for the parameter being measme, d.

The conditional probabilities required to fully define the Belief Network shown in Figure 7
were derived from the assumptions given above. The following derivations assume that
all relations are binary (i.e., integrate information from two sensors).

The probabilityof a sensorfailingon a particularcontrollercycleisgiven by

Equation I. P(Sensor Invalid) = CycleTime /MTBF.

Thus, theprobabilityof a sensorwith a MTBF of 30 minutes failingduring a _40ms_le

is0.0000222, while fora sensorwith a MTBF of 20 hours thisprobabilityis0._.

The probabilityof a relationholding,given thatallof therelatedsensors arc working, is

determined by the thresholdlevelplacedon therelation.Thus,

Equation 2. P(RelationHolds I SensorlValid, Sensor2Valid) = K

where K is a quantile of the normal distribution (e.g., for a 3 standard deviation relation
threshold, K = 0.997).

Since a failedsensor emits random values,thereisstillsome probability,Pn, thata given

reading may fallwithin the normal range of valuesforthe sensor,causing the relationto
continue to hold. (Note thatforhard sensorfailuresPn = 0.)Ifthisnormal range istaken

to be 3 standard deviations, then

Equadon 3.
2 x 3 x Standard Deviation

Pn - Range of Sensor

For SSME sensors, Pn has been empirically determined to be have an average value of

0.22 (although it is slightly different for each sensor). The probability of a binary relation
holding given that one of its sensorshas failed is thus

Equat/on 4.

Equat/on 5.

P('RelationHolds I SensorlInvalid, Sensor2Valid) = Pn
PfRelationHolds I SensorlValid, Sensor2lnvalid) = Pn

Similarly, the probability of a binary relation holding given that both of its sensors have
failed is

Equat/on 6. P(RelationHolds I SensotlInvalid, Sensor2Invalid) = Pn x Pn

The probabilities given above yield the following joint probability distribution for the
network shown in Figure 7.

Equation 7. P(S 1,$2,$3,S4,R I,R2,R3,R4) =
P(S1) x P(S2) x P(S3) x P(S4) x

P(RIlS 1,$2) x P(R21S 1,$3) x P(R31S2,S3) x P(R41S 1,$4)

""P(A)" can be read as "the probability of A being true'. "P(A,B)" can be read as the "the probability of A
and B being true." "P(A IB)" can be read as "the probability of A being true given that B is Irde". "P(A I
B,C)" can be read as the "the probability of A being true g_ven thatB and C axe true".

7



Given the joint distribution, the goal is to determine the probability of any one sensor
working given the status of all relations in the network (this is the basis for the real-time,
one-cycle decision problem). This can be achieved by using Bayes' rule. For example,
after measurements for S1, $2, $3, and $4 have been taken, and relations R1, R2, R3, and
R4 have been evaluated to determine whether they hold or not, the probability of sensor S 1

working can be determined as follows.

Equation 9. P(SIlR1,R2,R3,R4) = P(S1,R1,R2,R3,R4)p(R1,R2,R3,R4)Baye°s Rule

3_tCre,

EquationI0. P(S 1,R1,R2,R3,R4) =
P(S1,S2=Vafid,S3=Valid,S4=Valid,R1,R2,R3,R4) +
p(S 1,S2=Valid,S3=Invalid, S4--Valid,R 1,R2,R3,R4) +
P(S 1,S2--Invalid, S3-Valid, S4=Valid,R1,R2,R3,R4) +
P(S l,S2-Invalid,S3-Invalid, S4=Valid,R 1,R2,R3,R4) +
p(S 1,S2=Valid,S3=Valid, S4=Invalid,R 1,R2,R3,R4) +
P(S 1,S2=Valid, S3-Invalid, S4=Invalid,R1,R2,R3,R4) +
P(S 1,S2-_Invalid,S3-Valid,S4=Invalid,R1,R2,R3,R4) +
P(S 1,S2=Invalid,S3=Invalid,S4=Invalid,R1,R2,R3,R4)

and

Equation I 1. P(R1,R2,R3,R4) =
p(S1--Valid,S2=Valid,S3=Valid,S4=Valid,R1J_2,R3,R4)+
p(S1=Valid,S2=Valid,S3=Invalid,S4---Valid,R 1,R2,R3,R4)+
P(S1-Valid,S2---invalid,S3=Valid,S4=Valid,RI,R2,R3,R4)+
P(S I=Valid,S2=invalid,S3=Invalid,S4----Valid,RI,R2,R3,R4)+
p(S1=Invalid,S2=Valid,S3--Valid,S4=Valid,R1,R2,R3,R4)+
p(S1=Invalid,S2-Valid,S3=Invalid,S4-_-Valid,RI,R2,R3,R4)+
p(S1=Invalid,S2=Invalid,S3=Valid,S4=Vafid,R1,R2,R3,R4)+
P(S1=Invalid,S2=Invalid,S3=Invalid,S4=Valid,RI,R2,R3,R4) +
P(Sl=Vslid,S2--Valid,S3=Valid,S4=Invalid,RI,R2,R3,R4)+
P(S1-Valid,S2=Valid,S3=invalid,S4=Invalid,RI,R2,R3,R4)+
P(S1--Valid,S2=Invalid,S3-Valid,S4=Invalid,RI,R2,R3,R4)+
P(S1-Valid,S2=Invalid,S3=Invalid,S4=Invalid,RI,R2,R3,R4)+
P(S1=Invalid,S2=Valid,S3=Valid,S4=Invalid,RI,R2,R3,R4)+
P(S1---Invalid,S2-Valid,S3=invalid,S4=Invalid,R1,R2,R3,R4)+
P(S1=Invalid,S2=invalid,S3=Valid,S4=invalid,RI,R2,R3,R4)+
P(S1-Invalid,S2-Invalid,S3=invalid,S4-invalid,RI,R2,R3,R4)

Each term of these latter two equations can be evaluated using the joint probability
distribution given in Equation 7.

Given the ability to compute the probability of a sensor being valid or not given the status
of all relations in the network (as in Equation 9), an optimum one-cycle decision strategy

can be developed by snnply thresholding on this probability. Table 1 shows the validatio_
probabilities for sensor S1 given that the MTBF of S 1, $2, $3, and $4 in Figure 7 is
minutes, the relation residual threshold for R1, 1t2, R3, and R4 is 3 standard deviations,
and Pn is 0.22. From this table it can be seen that the optimum strategy, given these

assumptions, is to disqualify sensor S1 when relations R1, R2, and R4 do not hold.



p(S 1=V alidlR l=Holds,R2---Holds,R3=Holds,R4=Holds) -- 1
P(S l=ValidlRl=Holds,R2=Holds,R3=Holds,R4=NotHold) = 0.9997204
P(S l=ValidlRl=Holds,R2=Holds,R3=NotHold,R4=Holds) = 1
P(S l=ValidlR1 =Holds,R2=Holds,R3=NotI-Iold,R4=NotI-Iold) = 0.9997204
P(S l=ValidlRl=Holds,R2=NotHold,R3=Holds,R4=Holds) = 0.9997191
P(S l=ValidlRl=Holds,R2=NotHold,R3=Holds,R4=NotHold) -- 0.7523449
p(S 1=ValidlR 1=Holds,R2=NotHold,R3=NotHold,R4=Holds) = 0.9998867
p(S 1=ValidlR 1=Holds,R2=NotHold,R3=NotHold,R4=NotHold) = 0.8828096
P(S 1=ValidlR 1=NotHold,R2=Holds,R3=Holds,R4--Holds) = 0.9997191
P(S l=ValidlR1 =NotHold,R2=Holds,R3=Holds,R4=NotHold) = 0.7523449
P(S l=ValidlR1 =NotHold,R2=Holds,R3=NotHold,R4=Holds) = 0.9998867
p(S 1=ValidlR 1=NotHold,R2=Holds,R3=NotHold,R4=NotHold) = 0.8828096
P(S 1=ValidlR 1=NotHold,R2=NotHold,R3--Holds,R4=Holds) = 0.7515119
P(S l=ValidlRl=NotHold,R2=NotHold, R3=Holds,R4=NotHold) = 0.002574868
p(S l=ValidlR 1=NotHold,R2=NotHold,R3=NotHold,R4=Holds) = 0.9227433
P(S l=ValidlRl=NotHold,R2=NotHold,R3=NotHold,R4=NotHold) = 0.01009216

Table 1. Example Validation Probabilities for Sensor S1

There are two measures of quality for any validation algorithm; the false alarm and missed

detection rates (equivalent to Type I and Type II errors in statistics, respectivelyl9). The

false alarm rate is the probability that the validation system will disqualify a sensor, when it
is in fact working correctly. The missed detection rate is the probability that the validation
system will qualify a sensor, when it has in fact failed (this is related to the notion of
sensitivity). These rates can be computed for the one-cycle decision strategy described
above. The false alarm rate for sensor S 1 is the sum of

P(S 1=Valid,S 2,S 3 ,S4,R 1,R2 ,R3,R4)

in all situations in which the validation system decides to disqualify S 1.

given above, the false alarm rate is

2.71412E-8

2.74683E-8

For the example

Similarly, the missed detection rate for sensor S1 is the sum of

P(S 1 =Invalid,S2,S 3,$4,R 1,R2,R3,R4)

in all situations in which the validation system decides to validate S 1. For the example

given above, the missed detection rate is 1.16765E-5.

These two quality measures were used to evaluate many alternative answers to the
questions posed above. The results indicated that:

• At least three relations involving a sensor's value are required to provide enough

information to disqualify the sensor.
• The number of relations involving a sensor's value which must be violated in order to

disqualify the sensor varies with the number of relations. For example, in the network

, 9



shown in Figure ? in which sensor S 1 is involved in three relations, all three relations
must be found not to hold before the common sensor can be disqualified.
A 3 standard deviation residual threshold should be used on all relations to determine if

they hold or not.
A multi-cycle decision strategy must be used in order to get the error rates below

acceptable levels. The best strategy evaluated was a 3-of-5 strategy, in which a sensor
must be judged bad (using the one-cycle strategy) on at least three of the last five

controller cycles before it can be conclusively disqualified.

Of the results obtained, the most significant was that only the relations directly bearing on a
sensor need to be evaluated in order to validate the sensor. For example, in the network

shown in Figure 7 only relations R1, R2, and R4 need to be considered when validating $1
(see Table 1).

Given this, and the fact that a voting table can be constructed which specifies the number of
those relations which must be violated before the sensor can be disqualified, an algorithm

can be designed which only evaluates relations for a particular sensor until it is impossible
to disqualify it. For example, when validating sensor S 1 in the network shown in Figure
7, the relations R1, R2, and R4 can be examined in sequence, but as soon as one is found
to hold, the validation process for S 1 can stop because it is impossible to disqualify it (i.e.,
all three relations must be violated in order to disqualify a sensor with three relations).

Thus, all relations in the network do not need to be evaluated every cycle.

The maximum number of relations which can be expected to fail per controller cycle can be

computed and translated into a hard upper bound on processing time for the validation
system. Assuming that at most one sensor can fail on a given controller cycle, the
maximum number of relations which need to be evaluated each cycle is given by the

following:

For each of the valid sensors, the first relation always needs to be evaluated (assuming
a 3-of-3 disqualification strategy). However, we can compute the probability, of a given
number of additional relations failing and pick the smallest number that gives us the

reliability we want. The probability of more than r relations out of the total R relations
in the network failing (due to noise and modelling errors) is:

R

i__+l(t_i) x P( Relati°nH°lds)R'i x P (Relati°nN°tH°ld)i

This is a sum of binomial probabilities, which for large R and small

P(P,,elationNotHold) can be approximated by a sum of Poisson probabilities, with

_t=R x P(RelationNotHold). If there are three unique relations for each of 115 sensors
on the SSME, then R=115"(3-1)-2=228 and P(RelationNotHold)=0.003 (for a 3-

standard-deviation threshold), making 1_=0.684. A table of Poisson probability

sums 19 indicates that at most nine additional relations would need to be checked to

yield a very high degree of confidence.

Assu/ning that one sensor did fail on a given cycle, the number of relations that need to
be evaluated to confirm the failure is simply the number of immediate relations that the
sensor has (in the worst case they would all need to be checked). For a sensor with five

relations, all five may need to be evaluated in order to disqualify the sensor.
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Thus, for the 114 validsensors,one relationmust always be checked, and we willallow

an additionalnine to be checked in the overall network to guarantee a high level of
confidence.For the one failedsensor,alltltrecof itsrelationsmust be checked. Thus, in

the worst case,a totalof 114 + 9 + 3 = 126 relationsneed to be evaluatedon any given

cycle.The small number ofrelationswhich need tobe evaluatedeach cycle,coupled with

the fact that only the relationsdirectlyinvolving a sensor need to be evaluated for

validation,allowed an algorithmtobe developed which isentirelyscaleable(i.e.,willwork

with a largenumber of sensorsand relations).

These results are based on our assumptions about the accuracy and reliability of the sensors
on the SSME. Although studies have shown that these results are insensitive to small

changes in the assumed parameter values (corroborated by De Bruyne20), large changes

would require a new analysis (e.g., if the system were to be used to validate sensors on a
power plant). In particular, order-of-magnitude changes in sensor reliabilities would
require a re-analysis. Changes in the validation network topology in response to changes
in SSME hardware configuration will have no effect on these results.

Software Design, Develop .m¢ntand Test

The algorithmand data structuresforthe core sensorvalidationroutinewhich performs the

one-cycle decision making are outlinedin Figure 8 and Figure 9, respectively.Every

controllercycle,each sensorischecked insexlucnce.A sensorcheck consistsof evaluating

allof therelationswhich directlybearon the sensoruntilaconclusionabout itsvaliditycan

be made. Typically,thiswillinvolveevaluatinga very smallnumber of relationsand then
stopping when itbecomes impossible to disqualify the sensor. When a sensor is

permanently disqualified,allrelationswhich use itsvalue aredeactivated.This ensuresthat

the system willnot try toperform validationusing data from a failedsensor. Thus, the

algorithmkeeps trackof which relationsareactiveand which areinactive,and willcontinue
tovalidatea sensoreven when fewer relationsareavailable.

Several additional software modules were developed to augment the core one-cycle
validation routine.These include:

• Steady-StateDetection n Detectswhen theengine has reached one of a known setof

steady-stateconditions.

OneCycleValidate(Sensor)

Passed _- 0

Validated(-- False

NumActiveRelations _--

CountActiveRelations(Sensor.Relation__List)

DO for each Relation in Sensor.Relation_List UNTIL Validated

IF(Relation.Status is Active) THEN

IF(Relation.Eval__Function()) THEN

Passed (-- Passed + 1

IF(Passed _ PassTable[NumActiveRelations]) THEN

Validated e- True

RETURN(Validated)

Figure 8. One-Cycle Sensor Validation Algorithm

11
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Other Related

Eval Function

Status {Active or Inactive}

Relation

Figure 9. Primary Data Structures Used in Sensor Validation Software

Dynamic Relation Biasing B In order to get the sensitivity required to detect sensor
failures before hard limits (redlines) were exceeded, the significance of engine-to-engine

variations in operating conditions had to be understood and addressed. To handle this,
the system took several data samples as it entered each steady-state condition and biased
the relations accordingly. This biasing was limited, however, to prevent accommodating
data from sensors which may have failed during transients (i.e., the bias term was itself
thresholded).

Table Compilation m Since a large portion of the development effort for this system was

spent on developing and tuning the relations used in the network, a module was
developed to facilitate the specification of the various data structures used in the system.
This module takes a text file description of the relations to be used, and compiles all of
the tables and constants requhed by the validation system.

The AREC-hosted SDV system software consisted of about 1,000 lines of C code. It was

developed on a Sun SPARCstation using recorded sensor data from SSME tests. The
network shown in Figure 10 was used to validate the High Pressure Fuel Turbine
Discharge Temperaune (I-IPFT DS 1") sensors using six parameters (described in Table 2)
and eleven binary empirical relations. This was a fully-connected network with the
exception of relations 93/209, 93/210, 130/209, and 130/210 which proved to be very poor
predictors and negatively impacted the sensitivity of the system.

The models used in the AREC-hosted SDV system were empirically derived, binary
models as indicated by Figure 10. In general, either linear or cubic models were derived.
Most relationships involving only pressures and/or speeds appeared linear when cross-
plotted. However, relationships involving temperatmes (particularly the High Pressure
Fuel Turbine Discharge Temperatures) appeared to have a cubic relationship when cross-

plotted. The following steps were used in the derivation of these models:

. Data for several firings were concatenated together into a large training file. For the
network shown in Figure 10 the tests used were A1618, A1612, A2492, A2497,
and B 1072, since these represent one firing from each of the different engines for
which data was available. The datasets were first stripped of all data prior to
START+7 seconds to remove the starmp transient, and all data after the
SHUTDOWN command.

12



Figure 10. AREC Sensor Validation Network

PID Number
93
130
209
210
231
232

280
287

Description
PBP Discharge Temp, Ch A
MCC Pressure, Ch A1
LPOP Discharge Pressure, Ch A
LPOP Discharge Pressure, Ch B
HPFr Discharge Temp, Ch A
HPFT Discharge Temp, Ch B
Control Signals

Vehicle Command (Engine Start/Stop)
MCC Pc Control Reference

Table 2. Eight Sensor Channels Used in the AREC-Hosted Sensor Data
Validation System

.

3.

o

5.

6.-

7.

A standard linear regression routine was then used to generate both first and third-
orderpolynomialmodelson thetestdataforevery " ofsensors.
The third-ordermodels were convertedintofour _t-ordcr models by evaluating

thefirstderivativeateachpower levelusingaveragevaluesforthesensorsinvolved
(referredtoas tangent-cubicmodels).Figure11 isa graphicaldepictionof this
procedure.Thiswas performedbo_ forrun-timeefficiency(linearmodelsareless
costly tO evaluate than cubic ones) and becauseitwas feltthatthetangent-cubic
modelswould performbetterunderanomalousengineconditionsthanlinearmodels
trainedon pow_-level-specificdata.
A programwas runforallrelationswhich computed theaverageoftheresidualsfor
allmodelsateachpower level.
A subsetoftherelationsderivedinsteps2 and 3 was selectedforuseC.mparticular,
only a first-orderOR a tangent-cubicmodel was used forany glven pairof
serlsors).
Initial thresholds were defined for the selected models based on the results of step 4

(initially set at three standard deviations).
The assembled SDV system was tested against the full-sample data from the
training datasetstoensure that no falsealarmswere issued.
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Fuel PreBumerOxidizerValve Position

Figure II: Tangent-Cubic Empirical Model

8. A variant of the SDV system was run to determine the sensitivity of the system in
detecting failures in each of the sensors. This was done by setting atl sensors to
their mean values and then varying one sensor's value incrementally until itwas
failed(theoverallprocesswas repeatedforallpower levels,forallsensors,and for
high and low variations). The mean values were taken from the Phase II SSME
Data Base maintained at NASA MSFC (dated 10/13/89). The primary purpose of
this test was to ensure that slow drifts in redline sensors would be detected by the
sensor validation system before the values reached redline.

9. The model residual thresholds were tuned to ensure maximum sensitivity while
ensuring that no false alarms were issued. This involved many iterations through
steps 7, 8, and 9. The final thresholds incorporated into the run-time sensor
validation system are constant, and do not change between power levels.

10. A program was run to compute the relation biases (model offsets) used on a
number of different test datasets. This information was used to set the bias limits.
Since there were not enough datasets to obtain a statistically significant sample of
biases for each sensor, the limits were empirically set to 150% of the largest bias
seeIl.

The sensor validation system was then tested on three additional validation datasets--
A2495, B1069, and Bl071mwithout any false alarms being issued (these were the only
additional datasets available at the time; for increased reliability the SDV system should be
validated on a much wider range of datasets). In addition, sensitivity analyses were
successfully run on all red-line sensors to ensure that the validation system would detect
slow drift failures prior to redline exceedance. These tests were performed on the
development workstation in a non-real-time environment.

Simulation Laboratory_ Tests
The sensor validation software was then integrated into the Advanced Rocket Engine
Controller and set up in Aerojet's Real-Time Simulation Laboratory. This facility is based
on an AD-i00 multiprocessor computer, which is capable of either simulating engine
firings or replaying data from engine f_ings in real-time. The AD-100 was programmed to
replay recorded data from I0 SSME firings in order to test the AREC and the real-time
characteristics of the sensor validation system. The system correctly monitored nine normal
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SSMEtestsin real time without anyfalsealarms being generated. The system correctly
detected a hard failm'c in HPFT DS T on a tenth SSME test dataset. 21 Table 3 summarizes
these results.

Test Duration Results
A1619 529 No falsealarms.
A2497 550 No falsealarms.
A2493 550 No falsealarms.
BI046 530 No falsealarms.
BI064 520 No falsealarms.
B1067 700 No false alarms.
B1073 80 No false alarms.
B1075 300 No false alarms.
B1077 513 No false alarms.
A1637 Failure occurred during power level

transient. SDV system detected failure 1.48
seconds later, following its post-transient
delay and training interval (performed
correctly).

Table 3. Simulation Laboratory False Alarm and Hard Failure Detection
Test Results

In order to evaluate the sensitivity of the system to "soft" sensor failures in a real-time
environment, a series of tests were run in which a slow drift in I-IPFT DS T (high or low)
was simulated by the AD-100 computer while all other sensors were held at their nominal
values (engine test data was not used for these tests). The point at which the system
disqualified the sensor was then recorded. These tests, summarized in Table 4, indicated
that the system had adequate sensitivity to soft failures.

Real-Time Vali&tion on TI'B
Following tests in APD's Real-Time Simulation Laboratory, the AREC-based sensor
validation system was installed in the Technology Test Bed blockhouse at MFSC to receive
and analyze real-time data f_om 'ITB hot-fire tests. The same validation network and sensor
validation software configuration used in the Simulation Laboratory tests were used aI
TrB.

Table 5 summarizes the results of the TI'B tests. The sensor validation system correctly
tracked engine start, stop, and power level transitions, performed bias training., and
monitored nominal data without issuing any false alarms. However, none of the momto .r.e_
sensors experienced failures during the test series, so the sensitivity of the system in me
TrB environment could not be established.

H.3. Emvirleal and Characteristic Modeling,
In FY92 Aerojet undertook the task (under the Life-Prediction contrac0 of determining the
viability of using analytical redundancy to validate the majority of the sensors used on
SSME for control and health monitoring. The basic approach was to identify and
investigate sets of engine parameters whose measurements are statistically correlated for a
nominal engine firing, or whose measurements are known to be related via fu'st-principle
(characteristic) equations.
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PID Drift Power
Direction Level %

231 High 65
100

" 104
" 109

Low 65
" 100
" 104
" 109

232 High 65
" I00
" 104
" 109

Low 65
" 100
" 104
" 109

L i

Value at Which
Sensor Was
Disqualified

Criteria for Pass
(Redline)

1550 <1850
1718 "
1761
1842
1406 None
1229 "
1361 "
1384
1611 <1960
1716
1798
1900
1400 None
1616
1641
1710

Table 4. Simulation Laboratory Tests of "Soft" Failures via Induced Drifts

T_t Date Duraii'0n
(seconds)

TYB-031 4/15/92 85

TYB-032 4/28/92 205

TIB-033 5114/92 18

TTB-034 5/28/92 210

TTB-035 6/11/92 200

Notes

_lominal firing. No false alarms, no missed
detections.
Nominal firing. No false alarms, no missed
detections.
Ambient powerhead temperature redline cutoff. No
falsealarms, no missed detections.
Nominal f'mng. No false alarms, no missed
detections.
Nominal firing. No false alarms, no missed
detections.

Table $. TTB Test Results

Sensor Selection
Table 6 lists the engine parameters and the appropriate sensors investigated in this task.
Some of these parameters were selected as being critical to safely operating the engine,
including control and rediine parameters and those identified for use in advanced safety
algorithms. Less critical sensors that might provide additional analytical redundancy
coverage were also included. Sensor data is captured by two different systems during an
SSME firing: the engine controller relays data from sensors with P ID numbers of 300___
less via a Command and Data Simulation (CADS) computer; while sensors w_tla PID

numbei's over 300 are caputured by the facility data recording system.
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Parameter PID PIDs Used

High Pressure Fuel Pump (HPFP) Shaft Speed
High Pressure Fuel Turbine (HPFT) Discharge

Temperature
HPFP Discharge Pressure
Main Combustion Chamber (MCC) Pressure

Fuel Preburner (FPB) Chamber Pressure
HPFP Coolant Liner Pressure
Oxidizer Preburner (OPB) Chamber Pressure
FPB Oxidizer Valve Position
HPFP Inlet Pressure

Oxidizer Flow (Facility)
Fuel Flow (Facility and Engine)

MCC Coolant Discharge Pressure
Low Pressure Fuel Turbine Inlet Pressure
Low Pressure Fuel Pump CuPFP) Speed
Low Pressure Oxidizer Pump (LPOP) Speed
High Pressure Oxidizer Turbine (HPOT) Discharge

Te_
MCC Hot Gas Injection Pressure
MCC Oxidizer Injection Te_
OPB Oxidizer Valve Actuator Position

MCC Coolant Discharge Temperature
LPOP Discharge Pressure
Preburner Boost Pump (PBP) Discharge Temperature
MCC Liner Cavity Pressure
HPOP Discharge Pressure
PBP Discharge Pressure
HPFP Discharge Temp
HPOP Inter. Seal Purge Pressure
HPOT Secondary Seal Cavity Pressure
HPFP Inlet Temp
HPOP Balance Cavity Pressure
I-IPFP Balance Cavity Pressure
HPFP Coolant Liner Temp
Engine Fuel Inlet Pressure
Engine Oxidizer Inlet Pressure
HPOP Primary Seal Drain Pressure
HPCYI'Primary Seal Drain Pressure
Engine Fuel Inlet Temp.
Engine Oxidizer Inlet Temp
HIK)T Secondary Seal Drain Temp
HPOT Primary Seal Drain Temp
Fuel Repressure Interface Pressure

260,261,764 260,764
231,232 231,232

52,459 52
129,130,161,16 129
2,63
58,410 58
53,54 53
480 480
42,143,175 42,175
203,204 203
1212,1213 1212
133,253,301, 133,722,
251,722,1205, 1205
1206
17 17
436 436
32,754 32
30,734 30
233,234 233,234

24,371 24,371
21,595 21
40,141,176 40,176
18 18
209,210 209
93,94 93
1951,1956,1957 1951
90,334 90,334
59,341 59
659 659
211,212 211
91,92 91
225,226 225
327,328 327,328
457 457
650 650
819,821,827 819
858,859,860 858
951,952,953 951
99O 990
1021,1017,1018 1021,1017
1058,1054,1056 1058,1054
1188 1188
1190 1190
835 835

Table 6. Sensors Used in FY92 Modeling Task
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The primary objective of this task was to consider the relationships between various engine

parameters, thus redundant sensors were typically not evaluated (i.e., only_ne PID pereluded afterwereparameter was used in the analyses). Several redundant measxa_ments
an initial analytical and statistical survey identified those which showed significant
differences.

The data sets used consisted of nine nominal test firings for training and two additional test

firings for verification. As shown in Table 7, these test cases included various engines
including multiple tests with the same engine, thus providing useful information on test to
test variations.

--Test Firing Engine Duration
A2530 2206 300.00 sec
A2536 2206 300.00 sec
A2539 0216 530.00 sec
A2547 2011 420.00 sec
A2548 2206 300.00 sec
B1060 0213 530.00 sec
B1069 0213 700.00 sec
B1077 0213 513.00 sec
B1089 0213 530.00 sec
B1063 0213 513.00 se_
A2537 2035 300.00 sec

Table 7. Test

Use

Training
Training
Training

-Training
Training
Training
Training
Training
Training

Verification
Verification

Firing Datasets Used in FY92 Modeling Task

The sensor measurements were initially prepared by removing the start transients (first
seven seconds after ignition) and the shutdown transients. The data was then smoothed
and reduced fzom approximately one-half million data points per dataset to 50,000 data

points per dataset to make the modeling procedures tractable. Only routines which
computed model coefficients were run on this reduced data; all other routines, including all
validation tests, used the original fullsample data.

Empirical Model Ranking
Initially, first and third degree binary curve fits were ..c_mputed._tween ._. pairs o.f select_
PIDs. The curve fits were ranked for each test accor0mg to minimal residual variance ana

the rankings were averaged across the nine training test firings (e.g., if a model had the
third lowest residual variation in half of the tests and the fourth lowest residual variation in

the other half, its final ranking would be 3.5). As an example, Table 8 lists the top 20
ranked linear and cubic fit parameters for the High Pressure Fuel Pump Speed, Channel A
sensor (PID 260). The "rank" column in this table is the averaged rank value described
above.
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260 RPM HPFP SPEED A

Linear fit ranking.

rank n
0.00000 9

1.00000 9

4.44444 9

4.88889 9

5.88889 9

7.22222 9

7.33333 9

7.44444 9

7.44444 9

8.00000 9

10.0000 9

10.8889 9

13.8889 9

14.0000 9

15.7778 9

16.6667 9

16.7778 9

16.7778 9

18.3333 9

19.6667 9

19.8889 9

Cubic fit ranking.

rank n

0.00000 9

1.11111 9

3.44444 9

4.33333 9

5.77778 9

6.00000 9

6.66667 9

8.33333 9

9.66667 9

9.77778 9

10.1111 9

13.0000 9

13.7778 9

15.1111 9
15.6667 9

16.8889 9

17.7778 9

17.8889 9

17.8889 9

19.6667 9

20.1111 9

name
260

764 RM

'_ T2

436

722
30

. 53
52
371
1205

90

457

328

334

1212

: 835

58

327

RPM

PSIA

PSIA

GP

GPM

GM

RPM

PSIA

PSIA

GP
GM

PSIA

GP

GP

AP

GM

GP

PSIA

GP

name
260 RPM

764 RM

129 PSIA
722 GM

_ T2GPM
53 PSIA

_4 PSIA6 GP

371 GP

52 PSIA

457 GP

30 RPM
=

90 PSIA

1205 GM

32 RPM

328 GP _:_
1212 GM

334 AP

58 PSIA

835 GP

HPFP SPEED A

HPFP SPD NFD 48KRPM

HPFP DS T CH A 30/560
MCC PC A2

MCC CLNT DS PR

LPFT IN PR 1 10K PSIS

FUEL FLOW A1

ENG FL FLOW NFD 29KGPM

LPOP SPEED

HPFP CLNT _ A

HPFP. DS PR A

MCC H. G. INJ PR0/5000PS

FAC FL FLOW 1 22KGPM

HPOP DS PR A
HPFP BAL CAV PR 10K PSIS

HPOP BALCAV 2A P5K PSI

HPOP DS PR NFD 7K PSIA

FAC OX FLOW 1 8500GPM

FL PRESS INT PR 5K PSIG

FPB PC A

HPOP BALCAV IA PSK PSI

HPFP SPEED A

HPFP SPD NFD 48KRPM

MCC PC A2
ENG FL FLOW NFD 29KGPM

HPFP DS T CH A 30/560
FUEL FLOW A1

HPFP CLNT LNR A

MCC CLNT DS PR

LPFT IN PR 1 10K PSIS

MCC H. G. INJ PR0/5000PS
HPFP DS PR A

HPFP BAL CAV PR 10K PSIS

LPOP SPEED

HPOP DS PR A

FAC FL FLOW 1 22KGPM

LPFP SPEED

HPOP BALCAV 2A P5K PSI

FAC OX FLOW 1 8500GPM

HPOP DS PR NFD 7K PSIA

FPB PC A

FL PRESS INT PR 5K PSIG

Table 8. Ranked Linear and Cubic Fit Parameters for PID 260
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Theserankingswereanalyzed and the top three candidate models were selected for each
parameter (e.g., the circled PIDs in Table 8). Other than removing redundancies from
consideration, parameters were selected on the basis of their ranking and knowledge of
nominal SSME operation. For example, in Table 8, PID 129 was not selected because
most parameters have a very high correlation with Main Chamber Pressure (almost all
measurements in the engine scale up and down with power level) and PID 436 was not
selected because the cubic model did not rank well, and because it is "causally remote"
from the PID 260 measurement. Attachment 1 presents the selected parameters and a brief
rationale for each, the average "rank" value described above, the order of the model
selected for use ("1" for linear and "3" for cubic) and an evaluation of the model fit with
and without bias training.

Empirical Model Evaluation
The linear and cubic fit coefficients and residual characteristics for the three selected
empirical relations for each sensor were then computed. Nine sets of coefficients were
computed for each relation by performing linear regression on each of the nine training
datasets individually. A composite, or "accumulated" model was then formed for each
relation by averaging the coefficients obtained for each training dataset. This accumulated
model was then evaluated against each of the u'aining datasets, and the mean and standard
deviation of the residual computed. Finally, the average of these means and standard
deviations for the accumulated model was computed as a measure of the overall quality of
the model

Tables 9 and 10 show these values for the three selected models for HPFP SPEED CH A
(PID 260) in linear and cubic form, respectively. In each of these tables, the "Mean" and
"Sigma" values are the mean and standard deviation of the model residual, and "CO", "CI",
etc., are the model coefficients (with "CO" being the zero-order coefficien0. Note that the
dynamic rangeof PID 260 is1,350to45,000 RPM, so thattheseeminglylargeresidual
standarddeviationsareactuallyonlyaboutI/2% ofthesensor'srange.

Figures12-16areexamplesof scatterplots"(forthemodel relatingPID 260 toPID 659)
which were generatedtoshow how welltheempiricalrelationshipsfitthedata.Figures12
and 13 areplotsfortestA2530 which shows how thelinearand cubicmodels fita single
training dataset (with the models constructed on the same dataset). Figures 14 and 15 are
scatter plots for averaged relations (i.e., with coefficients averaged over all training tests),
evaluated against all test firing data to show the effects of test to test variations. Figure 16
is a scatter plot for the averaged relations evaluated against a single validation test firing
dataset 031063).

Attachment 1 includes some observations from this data. Parameters were identified as
good fits if their residual standard deviation was less than I% of the maximum parameter
value (maximum dynamic range of the sensor). Medium fit was associated with a residual
standard deviation of 1% - 2.5% of the maximum parameter value, and a poor fit was
considered when the residual deviations were in excess of 2.5%. Those parameters that
were basically not correlated were identified as unusable.

Attachment 2 presents the averaged coefficients for all selected linear and cubic models.

"A singlesampleofdatafollowingtheengineshutdownsignalwas erroneouslyincluded
ineachof theempiricaltrainingdatasets;theseshow up on theplotsassingleoutlierdata
points. It was believed that one data point out of 1200 would not affect the results.
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Linear Curve Fit

y-pid = 260 RPM

x-pid = _ 659 T2
Residual

Test Mean Sigma

a2530 -3.68E-04 2.18E+02

a2536 9.25E-04 1.51E+02

a2539 -1.68E-04 1.91E+02

a2547 3.17E-04 2.78E+02

a2548 1.23E-03 1.88E+02

b1060 4.24E-04 3.02E+02

bi069 3.26E-03 2.75E+02

b1077 -4.25E-04 3.21E+02

b1089 -2.04E-03 1.75E+02

Accum -1.98E+01 6.19E+02

x-pid = 17 PSIA
Residual

HPFP SPEED A

HPFP DS T CHA

C0

-6.0585E+03

-7.0018E+03

-6.6352E+03
-7.0957E+03

-6.9675E+03

-5.7085E+03

-5.6677E+03

-5.4051E+03
-5.3045E+03

-6.2050E+03

Cl
4.3131E+02

4.3608E+02

4.4143E+02

4.4303E+02

4.3826E+02

4.2960E+02
4.2677E+02

4.2730E+02

4.0703E+02

4.3120E+02

MCC CLNT DS PR

Test Mean Sigma CO Cl

a2530 1.93E-03 2.61E+02 1.3163E+04 4.9021E+00

a2536 1.63E-03 1.97E+02 1.3155E+04 5.0277E+00

a2539 1.84E-03 2.62E+02 1.3296E+04 4.9604E+00

a2547 1.06E-03 3.33E+02 1.3113E+04 4.8169E+00

a2548 -5.66E-04 3.07E+02 1.3155E+04 4.9314E+00

b1060 1.23E-03 3.06E+02 _ 1.2835E+04 4.9736E+00
b1069 1.10E-03 2.59E+02 1.2867E+04 4.9860E+00

b1077 -9.70E-04 3.18E+02 1.3640E+04 4.6331E+00

b1089 -2.03E-03 2.62E+02 1.2837E+04 4.8696E+00

Accum -2.07E+01 4.82E+02 1.3118E+04 4.90OIE+00

x-pid = _.._ 133 GPM
Residual

Test Mean sigma
a2530 -1.17E-03 2.65E+02

a2536 8.78E-04 2.22E+02

a2539 I.IOE-03 2.40E+02

a2547 1.37E-03 3.36E+02

a2548 -5.27E-04 2.93E+02

b1060 3.04E-03 3.10E+02

bi069 5.16E-04 2.59E+02

bi077 4.01E-04 3.20E+02

b1089 -2.09E-04 2.81E+02

Accum -4.93E+00 3.13E+02

FUEL FLOW A1

C0

1.2923E+04

1.3077E+04

1.2936E+04

1.2968E+04

1.2785E+04

1.3289E+04

1.3154E+04

1.3383E+04

1.3223E+04

1.3082E+04

CI

1.3551E+00

1.3663E+00

1.3763E+00

1.3653E+00

1.3714E+00
1.3542E+00

1.3614E+00

1.3426E+00

1.3651E+00

1.3620E+00

Table 9. Linear Empirical Fit Coefficients for PID 260
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Third

y-pid = _ 260 RPM

x-pid = 659 T2
Residual

Test Mean Sigma

a2530 -1.47E-02 1.53E+02
a2536 -1.64E-03 6.19E+01

a2539 5.66E-03 1.48E+02

a2547 i. 56E-02 1.43E+02

a2548 -3.38E-03 7.00E+OI

b1060 1.23E-02 2.93E+02

b1069 -3.16E-03 2.46E+02

b1077 -4.89E-03 3.08E+02

b1089 -6.63E-03 1.19E+02

Accum 1.35E+01 5.31E+02

Order Curve Fit

HPFP SPEED A

HPFP DS T CHA

Test CO C1

a2530 5.2353E+04 -1.8947E+03

a2536 5.1549E+04 -1.8052E+03

a2539 3.8672E+04 -1.3295E+03

a2547 6.2633E+04 -2.3689E+03

a2548 4.8362E+04 -1.6841E+03

b1060 6.4350E+04 -2.3934E+03

b1069 7.7948E+04 -2.9436E+03

b1077 5.6826E+04 -2.0473E+03

b1089 5.0955E+04 -1.7056E+03

Accum 5.5961E+04 -2.0192E+03

C2
3.0175E+01

2.8182E+01

2.2643E+01

3.6800E+01

2.6777E+01

3.6885E+01

4.4085E+01
3.1907E+01

2.5870E+01

3.1481E+01

C3

-1.2796E-01

-1.1648E-01

-9.4948E-02

-1.5701E-01

-1.1117E-01

-1.5718E-01

-1.8807E-01

-1.3412E-01

-1.0371E-01

-1.3229E-01

x-pid = . 17 PSIA MCC
Residual

Test Mean Sigma
a2530 -5.24E-03 2.29E+02

a2536 -I. 30E-03 I. 67E+O2

a2539 5.31E-03 i. 68E+02

a2547 3.81E-03 1.40E+02

a2548 -2.28E-03 2.50E+02

b1060 -i. 07E-02 2.93E+02

b1069 5.54E-03 2.38E+02

bi077 5.09E-03 3.06E+02

b1089 -7.51E-03 1.24E+02

Accum -2.52E+01 5.13E+02

CI_T DS PR

Test CO C1 C2
a2530 -8.1156E+03 2.1424E+01 -4.1676E-03

a2536 -2.2078E+03 1.7063E+01 -3.0331E-03

a2539 -2.5454E+04 3.5670E+01 -7.9006E-03

a2547 -4.4082E+04 4.9817E+01 -I.1386E-02

a2548 -1.7856E+04 3.0336E+01 -6.7359E-03
b1060 -4.5246E+04 5.1827E+01 -1.2376E-02

b1069 -3.9595E+04 4.7428E+01 -1.1247E-02

b1077 -1.2878E+04 2.3676E+01 -4.4670E-03

b1089 -6.2965E+04 6.4931E+01 -1.5588E-02

Accum -2.8711E+04 3.8019E+01 -8.5447E-03

C3

3.4339E-07

2.4769E-07

6.6387E-O7

9.3559E-07

5.8198E-07

1.0740E-06
9.7927E-07

3.4380E-07

1.3289E-06

7.2206E-07

Table 10. Cubic Empirical Fit Coefficients for PID 260
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Third Order Curve Fit

y-pid = 45 260 RPM

x-pid = 23 133 GPM
Residual

Test Mean Sigma

a2530 3.29E-03 2.04E+02

a2536 1.05E-02 1.77E+02

a2539 -4.63E-03 1.20E+02

a2547 9.46E-03 1.42E+02

a2548 5.91E-03 2.01E+02

b1060 -1.51E-02 2.91E+02

b1069 -1.11E-02 2.29E+02

bi077 -7.02E-03 3.08E+02

bi089 1.88E-03 1.32E+02

Accum -1.79E+01 2.82E+02

HPFP SPEED A

FUEL FLOW A1

Test CO

a2530 -2.8979E+04

a2536 -1.8418E+04

a2539 -3.4949E+04

a2547 -5.2971E+04

a2548 -3.2900E+04

b1060 -6.2824E+04

b1069 -5.%651E+04

b1077 -3.2726E+04

b1089 -7.3562E+04

Accum -4.3776E+04

C1 C2

1.0810E+01 -6.9746E-04

8.4511E+00 -5.1906E-04

1.2037E+01 -7.7387E-04

1.6344E+01 -I.0989E-03

1.1827E+01 -7.7853E-04

1.8687E+01 -1.2922E-03

1.7296E+01 -1.1915E-03

1.1506E+01 -7.3309E-04

2.1184E+01 -1.4824E-03

1.4238E+01 -9.5189E-04

C3

1.6863E-08

1.2443E-08

1.8400E-08

2.6247E-08

1.8946E-08

3.1627E-08

2.9255E-08

1.7345E-08

3.6404E-08

2.3059E-08

Table 10. Cubic Empirical Fit Coefficients for PID 260, cont'd
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Characteristic Equation Selection.
The characteristic relations were identified through consideration of available sensors and

knowledge of engine first principles. Of those considered, the sparsity of sensors on the
SSME allowed only three types to be applied: pump flow to impeller speed, pressure.rise
across a pump to the square of its speed; and line resistance (pressure drop to me tlow
squared). Table 11 summarizes the characteristic equations considered. The components
referred to are: High Pressure Oxidizer Pump (HPOP); High Pressure Fuel Pump (HPFP);
Low Pressure Oxidizer Pump (LPOP); Low Pressure Fuel Pump (LPFP); Low Pressure
Fuel Turbine (LPFT); and Main Combustion Chamber (MCC). In addition, "DS P" and
"IN P" refer to discharge pressure and inlet pressure, respectively. The last three models
for line resistances are approximations because not all instrumentation required was

available for true first principle relationships.

Model #

1,2

3,4

5,6

7,8,9

10,11,12

13,14,15

16,17,18

19,20,21

22,23,24

Equation
Fuel Flow

LPFP Speed ---constant
LOX Flow

LPOP Speed = constant
Fuel Flow

HPFP Speed = constant

L.POP DS P - Eng LOX IN"P = constant

LPOP Speed 2
HPFP IN'P - Eng Fuel IN P

LPFP Speed 2 = constant
HPFP DS P - HPFP IN P

HPFP Speed 2 = constant
HPOP DS P - MCC Pc

LOX Flow 2 = constant

M(_'C Coolant DS P - LPFT IN P
= constant

LPFP Speed 2
HPOP DS P - LPOP DS P

Spe -2ed = constantLPOP

Form

Pump
Affinity

Pump
Amrdty

Pump
Affinity

Pump
Amr_ty

Pump
Af_lr_ty

Pump
Affinity

Line
Resistance

Line
Resistance

Line

Resistance

Table 11. Characteristic Equations Evaluated

Characteristic Equation Fit
Attachment 3 provides details of the characteristic equations evaluated and the coefficients
derived from the training datasets. The models coefficients shown have been averaged over
all training datasets in the same manner as the "accumulated" empirical models. As an
example, Table 12 shows the derived coefficients for the characteristic equation relating
LOX Flow and LPOP Speed. In each of these tables, the "Mean" and "Sigma" values are
the mean and standard deviation of the model residual, and "CO", "el", etc., are the model

coefficients. The large residual means and relatively small residual standard deviations for
these models indicate that constant offsets (a zero-order term in the equation) should always

be used, even though the first principle relations do not specify their use. Offsets for the
accumulated (averaged) characteristic models should simply be the average of the residual

means computed. ....

Figures 17-19 are examples of the scatter plots generated during the study to show the
quality of characteristic relations when used as predictive models. Figure 17 is a plot for
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Characteristic Relation

Fac LOX Flow/ Lpop Spd = constant

PID 1212 : Fac LOX Flow

PID 30 : Lpop Spd

Characteristic Curve Fit

PID 1212 = cl * PID 30

Residual

Test Mean Sigma Cl Cl S.Err
a2530 -3.16E+03 6.47E+01 1.7572E+00 4.29E-03

a2536 -2.97E+03 4.35E+01 1.7047E+00 2.10E-03

a2539 -3.08E+03 3.83E+01 1.7262E+00 3.16E-03

a2547 -3.12E+03 4.52E+01 1.7812E+00 4.95E-03

a2548 -2.89E+03 4.97E+01 1.6816E+00 3.59E-03

b1060 -3.18E+03 4.30E+01 1.7374E+00 3.72E-03

b1069 -3.21E+03 5.06E+01 1.7414E+00 3.74E-03

b1077 -3.30E+03 4.78E+01 1.7637E+00 2.67E-03

b1089 -3.38E+03 3.88E+01 1.8136E+00 4.79E-03

Accum -3.14E+03 1.04E+02 1.7452E+00 1.41E-03

Characteristic Curve Fit

PID 30 = cl * PID 1212

Residual

Test Mean Sigma Cl Cl S.Err
a2530 1.82E+03 3.67E+01 5.6549E-01 1.38E-03

a2536 1.75E+03 2.55E+01 5.8541E-01 7.21E-04

a2539 1.80E+03 2.21E+01 5.7762E-01 1.06E-03

a2547 1.76E+03 2.53E+01 5.5966E-01 1.56E-03

a2548 1.73E+03 2.95E+01 5.9330E-01 1.27E-03

b1060 1.89E+03 2.45E+01 5.6574E-01 1.21E-03

b1069 1.88E+03 2.89E+01 5.6776E-01 1.22E-03

b1077 1.90E+03 2.70E+01 5.6168E-01 8.51E-04

b1089 1.88E+03 2.14E+01 5.4902E-01 1.45E-03

Accum 1.82E+03 5.99E+01 5.6952E-01 1.68E-04

Table 12. Characteristic Equation Coefficients for LPOP Equation #3

test A2530 which shows how the characteristic equation fits a single training dataset (with
the model constructed on the same dataset). Figure 18 is a scatter plot with model
coefficients averaged over all training tests and evaluated against all test firing data.
Figures 19 and 20 are scatter plots for the averaged model evaluated against individual
validation test firings. Table 13 is an evaluation of an characteristic equations considered.

Resul_of Empirical Modeling
Relations were successfully developed for 33 of the 53 parameters analyzed using linear
and cubic binary models. Of the remaining 20 parameters, two were found to be

27



8000 .... _J .... I .... I .... i .... I ....

6000 .. "-" ""
,,#

(,3

**o "
f

o b'-

_ 4000

o

u 200{: .... , _ ..... t .... I ..... ] .... i ....
3500 4000 4500 5000 5500 6000 6500

Predicted .. 1212 CId FAC OX FLOW 1 8500GPIA

Figure 17. Model for LPOP Equation #3 for Test A2530

80o0

6000

°_ 40O0

¢N

Accumlot.ed Tests
' ' ' ' i "_ '* ' ' I ' ' * ' I ' * ' ' ! ' ' ' ' I ' ' ' '

.o .¢.
o.oo. "

°1o

v ._pbd' " °

:. • ,- _ .-t
Q _

• . -_ oe

_. 2000
3500 4000 4500 5000 5500

Predicted _ 1212 GU FAC 0X FLOW 1

Figure 18. Averaged Model for LPOP Equation #3

• , , , I , , , , I , , , . I . _ , _ I ,., • • • I • • , ,

6O0O 6500
8SOOGPU

28



6500 ........... I ' ' ' I i

0
0
0

6000

9
5500

X
0

5000

o 4500 -

" 4000 -

3500 • ,
3OO0

°. ° ° .. ° . ......... .... °

' ' l ' ' " i | . . I , l ' ' ' i

.°

o. ;_'

" _i °

• • ",.

• " _ ,

R ! •

3500 4000 4500 5000 5500 6000 6500
Predicted " " 1212 GM FAC OX FLOW 1 8500GPM

Figure 19. Validation of LPOP Equation #3 on Test A2537

o: 6500
0
0
0
tO
¢0

6000

B
h

× 5500:
0

0

50OO

4500
0

ol

v-

4000

"6
3500

o< 350( 4000 4500 5000 5500 6000
Predicted 1212 GM FAC OX FLOW 1 8500GPM

Figure 20. Validation of LPOP Equation #3 on Test B1063

6500

, , , , i , , , , i , ,"-i'".' i , , , , i . . , , l , , , ,

..- _:_C

 :2"

"

,,,,l,,,,l.j,=l.,,,l,,.,l,,it

29



Eqn No PID Comments

1. 1205 Poor fit. Bias training will help.
2. 32 Medium fit. Bias training may help.
3. 1212 Medium fit.
4. 30 Medium fit.
5. 1205 Good fit.
6. 260 Medium fit.
7. 209 Good to medium fit.
8. 858 Medium to poor fit. Bias training may

help.
9. 30 Poor fit. Bias training may help.
10. 203 Poor fit. Bias training may help.
11. 819 Very poor fit.
12. 32 Poor fit. Bias training may help.
13. 52 Medium to good fit. Bias training may

help.
14. 203 Poor fit. Bias training may help.
15. 260 Medium fit. Bias training may help.
16. 90 Good fit.
17. 129 Good fit.
18 1212 Good fit.

19 17 Good fit. Bias training will help. PID32
relation not helpful

20. 436 Good fit. Bias training will help. PID32
relation not helpful

21 32 Medium fit.

22 90 Medium fit. Bias training will help.
23 209 Poor fit.

30 30 Medium fit. Bias waining will help.

Table 13. Characteristic Equation Observations

anomalous (PID 24 and PID 328") and six parameters appeared amenable to multi-

parameter regression modeling (i.e., PIDs 203, 233, 234, 209, 819, and 858 appear to be
a function of more than any one other parameter). The remaining 12 PIDs (18, 1951, 211,
225, 650, 951, 1021, 1017, 1058, 1054, 1188, and 1190)essentially did not correlate well
to any other measurements. A good example of this set is PID 1951 (MCC LINER CAV
P). According to SSME data analysts, this measures the pressure in a cavity between the
inside of the MCC and the outer wall of the combustion chamber. The normal behavior for

this sensor is to drop during start (as the MCC heats up, the cavity pulls a vacuum and the
pressure drops) and then level off for the rest of the test. This paran_ter's value is thus
primarily a function of time from START. These measurements which do not correlate well
to other parameters can be dropped from the list of sensors evaluated by the SDV system,
unless they are needed for control, redline, or health monitoring purposes, in which case a
more focused modeling effort will need to be undertaken.

" At the completion of the analyses it was discovered thal anomalous data from these two
PIDs had been included in the training datasets.
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In summary, a large percentage of the sensors on SSME can be successfully modeled using
linear and cubic polynomial regression techniques. The remaining sensors could be
modeled using multi-parameter models, or other forms of models such as time-based
models of nominal behavior, or more advanced models such as neural networks. For

parameters which are relatively constant during a nominal engine firing and which exist
primarily to detect specific failure modes (e.g., PID 1951 exists primarily to.detect MCC
burn-through), models may be developed by using data from engine anomahes or failure
simulations.

gesults of Characteristic Modeling
First-principle models are difficult to derive for the SSME due to the scarcity of sensors
relative to the complexity of the engine. In taking a very conservative approach, only 7
characteristic equations (with 30 parameter variations) could be fully justified as physically
sound. Only one of these 7 equations failed to provide any useful predictive models
(models I0, 11, and 12, relating pressure drop across LPFP to the square of LPFP
SPEED).

H.4. Summary of Work to Date

The fundamental idea of using analytical redundancy to perform sensor data validation in
real time on the SSME has been demonstrated by the work performed on this project.

However, while obtaining models for the majority of sensors used for control, redline, and
health monitoring purposes appears to be straightforward, a small set of sensors may

require extra modeling work if they are to be kept in the validation network.
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HI. Guidelines for the Develonment of SDV Models
The TYB tests of the AREC-hosted sensor validation system demonstrated the reliability of

using analytical redundancy for SDV. In addition, the SSME data analysis work performed
in FY92 demonstrated that models can be derived for most of the sensors of interest, thus

establishing that a real-time SDV system can be constructed for the SSME. This section
presents a few guidelines which help ensure the proper construction of the analytical
redundancymodels and validationnetwork used inan SDV system.

III.1. Sensor vs. Plant Anomaly Discrimination

There should be some guarantee that When an engine experiences an anomaly or failure, the
validationsystem willnot disqualifyallof the sensorsmeasuring the phenomenon when

they suddenly startreading grossly abnormal values; thisis the essence of the sensor

versusplantanomaly discriminationproblem.

The anal_C.tical redundancy approach taken in this project can correctly handle plant vs.
sensor failure discrimination as long as aU relations used are guaranteed to hold across atl
normal operating conditions of the engine, and the validation network is structured so that
no single engine anomaly will invalidate enough of the relations involving a particular
sensor to disqualify that sensor. If these two conditions are maintained, then the likelihood
of the SDV system disqualifying a sensor in response to an engine anomaly is extremely
low; on the same order as a simultaneous multiple-point engine failure.

For example, Figure 21 shows the sensor validation network used in previous examples.
In this network an anomaly in either pump alone (e.g., cavitation) would.not .._.use the
SDV system to disqualify $1. An anomaly in the low pressure pump may mv.ali.'date R2,
and an anomaly in the high pressure pump may invalidate R4, but both anomalies would
need to occur simultaneously (along with a significant discrepancy between S1 and S2)

before the SDV system would disqualify S1. Such an occurrence would constitute a
"tripie-pomt failure" in the system, which has a very remote possibility of occurrence.

i! ii!ii!iii!ii iiiiii i!!!iiiii!!     !!!i.!! !!!!i! iiiii   i!!ii!iiiiiii!iiiiiii!  iii! iiii i!ii  iii iii ! iiiii!i iii !i
iii iiiii!i!!iiiiiii2i iiii

[1 i i @i iii iii iii',!!i@iiiii!iiiii

:_:_: i:_:i:i:i:_:-:'ii::@_!_!!_!_!_i'_'!_!i i_!.:_i![_!!!_!_!!_i

R4

Fuel Flow
A

A=B

Fuel Flow
B

Figure 21. Plant vs. Sensor Failure Example

_w = ConstarrtIR2

Fuel Pump
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lII.2. Statistical Independence of Sensor Failures
The Bayesian approach to information fusion assumes that sensor failures are independent
events. In actuality, there may be events which affect the status of several sensors,
requiring changes in the Bayesian Belief Network and subsequent analyses (e.g., loss of
an I/O board). Some initial work has been performed by De Bruyne at U.C. Berkeley to

study this problem 9 and the results indicate that the independence assumption is justified
(i.e., that introducing events which affect several sensors into the analysis does not

significantly affect the results).

However, the statistical independence assumption can be violated by poor construction of
the validation network. Figure 22. shows a worst-ease example. The network is
constructed to validate sensors S1 and $2, using relations R1, R2, and R3; cross-checking

against each other and several other sensors ($3-$8). In this example, S1 and $2 rely
exclusively on common information for validation. In this network, if there were a failure
in either S 1 or $2, it would be impossible to determine which of them had actually failed
(the current algorithm would fail one arbitrarily, and then continually validate the other,
because there would not be any information to disqualify it after R1,112, and R3 were
invalidated).

Figure 22. Worst-Case Validation Network

This problem can be avoided through careful consu'uction of the network. However, if
only binary relations are used, it is impossible to construct a network in which the
independence assumption is violated (assuming that only one relation can be used between
any pair of sensors).

IlI.3. A_laDtin_ Models to New Line Reolaceable Units
As with most advanced systems, the SSME is not a static design. Components are
continually being re-designed and improved, and in some cases completely replaced. In
addition, engines of the same design can behave quite differently from one to another. In
order for the sensor validation system to retain its fidelity without causing false alarms in
the face of such changes in hardware configuration, the software must be set up so that the
analytical redundancy models can be qulcldy tuned when data becomes available f_om these
new configurations.
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III.4. Summary
The issues addressed in this section imply the following guidelines in developing analytical
redundancy models and in configuring the validation network:

• Models must hold over the widest possible range of normal plant behavior. This implies
that characteristic (first principle) models should be used whenever possible, and that all
models should be trained on as many datasets as possible. Even though empirical
models often seem to fit SSME data with more fidelity than characteristic models, there
is a higher degree of confidence that characteristic models will continue to hold during
anomalous engine conditions which were not present in the training datasets used to

• derive empirical models.
• Models with minimum cardinality (i.e., which relate the minimum number of sensors)

should be preferred over those with higher cardinality. The lower the cardinality, the
greater the guarantee that the statistical independence assumption will hold, and that the
system will properly discriminate between plant and sensor failures.

• A tool should be developed which assesses the degree to which the statistical
independence assumption is violated for any validation network configuration. The tool
must verify that for any single sensor failure the system must be able to: 1) uniquely
identify the failed sensor;, and 2) continue validating the rest of the sensors in the
network.

• The model-building software should be developed so that all models can be quickly re-
consu'ucted on new data following a design change or first test of a new engine.
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IV. FY93-95 Task Description
This section briefly describes the technical goals of the FY93-95 Real-Time Sensor Data
Validation task, and the design extensions to the AREC-based software required to meet
them

The primary goal of the FY93-95 task is to scale up the eight-channel sensor validation

system developed and tested on the AREC to validate approximately 97 channels of data
from the SSME in real-time (see Table 14.). Fundamentally, this will not require any

changes to the run-time algorithms, or to the established methodology for developing and
validating analytical redundancy models or for tuning and validating the network.

IV.2. Hard Failure Detection in Redline Sensors

The AREC-hosted SDV system utilized a 3-of-5 multi-cycle strategy (a sensor must be

flagged on 3 out of 5 consecutive cycles in order to be disqualified). Unfortunately, the
SSME controller will react if a sensor is over rediine on two of three consecutive cycles.

Thus, to prevent erroneous engine shutdowns the SDV system must be able to detect
"hard" sensor failures within two cycles for all redline sensors (at a minimum).

The proposed approach to detecting hard sensor failures is to determine if a sensor's rate-
of-change has exceeded a threshold amount over two consecutive cycles (i.e., threshold on
the magnitude on cycle 2 less the magnitude on cycle 0). If this condition holds, and the
validation network flags the sensor as anomalous during each of the two cycles, then the
sensor will be disqualified with a hard failure, For the ground test confignr.ati. "on, the SDV

system will still disqualify sensors with hard failures after two consecuuve anomalous
readings, but since data is only available to ground test computers on alternate controller
cycles the SDV system will actually be disqualifying such sensors following four controller

cycles in which the sensor is bad.

IV.3. Oeeration During Power-Level Transients
The AREC-based SDV system did not operate during engine start, shutdown, or power
level transitions. The new SDV system will operate, at a minimum, on the latter of these
transients. Thus, the system will be in continuous operation from approximately four
seconds after malnstage has been achieved until the shutdown signal is detected.

To accomplish monitoring through malnstage power level transitions, the SDV system will
utilize multiple sets of model thresholds and hard failure excursion thresholds. One set ot
thresholds will be used during steady-state (as in the AREC-hosted system), while other
thresholds will be used during engine transients and during the bias training period at the
start of each steady-state interval. These transient thresholds will undoubtedly be looser
constraints on engine behavior, While the SDV system will not be as sensitive to soft
sensor failures during the transient intervals, it will still be able to catch hard failures
following two samples of anomalous data. _

IV.4. Oneration Durin_ START Transient

As options to this task, the SDV system may be extended to monitor during the engine
start-up transient. While the basic approach to SDV is still applicable during start, the
models _quired to successfully cross-check sensors may become extremely complex in
order to take dynamic effects into account. Thus, the bulk of these optional tasks will be in
the development, test, and integration of new models which will utilize data trends and
temporal information, as opposed to the steady-state models which constitute the bulk of
the network used for mainstage.
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Parameter
MCC Pressure
OPOV Actuator Position
FPOV Actuator Position
C'L-WActuator Position
MOV Actuator Position
MFV Actuator Position
HPFP Inlet Temperature
HPFI' Inlet Pressure
Engine Fuel Flow
HPFTP Shaft Speed
HPFT Discharge Temperatm¢
HPFP Discharge Pressure
FPB Chamber Pressure
HPFP Coolant Liner Pressure
OPB Chamber Pressure
Facility Fuel Flow
Facility LOX How
MCC Coolant Discharge Pressure
LPFT Inlet Pressure
LJ'FPSpeed
LPOPSpeed
HPOT Discharge Temperature
MCC Hot Gas Injection Pressure
MCC LOX Injection Temperature
MCC Coolant Discharge Temperature
I2'OP Discharge Pressure
PBP Discharge Temperature
MCC Liner Cavity Pressure
HPOP Discharge Pressme
PBP Discharge Pressure
HPFP Discharge Temperature
HPOP IntermediateSeal Purge Pressure
HPOT Secondary Seal Cavity Pressure
HPOP Balance Cavity Pressure
HPFP Balance Cavity Pressta'e
HPFP Coolant Liner TemtgTaune
Engine Fuel Inlet Pressure
Engine Oxidizer Inlet Pressure
I-t_P Primary Seal Drain Pressure
HPOT Primary Seal Drain Pressure
Engine Fuel Inlet Temperature
Engine Oxidizer Inlet Temperature
Fuel Repress Interface Pressure
Heat Exchanger Discharge Pressure

PID I

129,130',16i,162,63
40,141,176
42,143,175
45,146,174
38,139,173
36,137,172
225,226
203,204
133,253,301,251,722
260,261,764
231,232
52,459
58,410
53,54
480
1205,1206
1212,1213
17
436
32,754
30,734
233,234
24,367,371
21,595
18
209,210
93,94
1951,1956,1957
90,334
59,341
659
211,212
91,92
327,328
457
650
819,821,827
858,859,860
951,952,953
990
1021,1017,1018
1058,1054,1056
835
34,878

Table 14. Preliminary List of SSME Sensors to Validate

IV.5. Integration of Advanced Models
Several groups are developing advanced models, such as neural networks, which relate
data from SSME sensors. 22-25 Since these models appear to perform very well, even
during power transients, they are excellent candidates for integration into the validation
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network as long as their run-time execution is not too computationally intensive. As NASA
provides these models, APD will test and integrate them into the system where needed to
provide a more robust validation capability.

IV.6. Software Development and Test

The SDV system will be ported to run on a 486 PC in the TI'B blockhouse, where it will
receive data in real-time from either live engine firings, or from playbacks of previous tests.
APD will be able to run the system and assess its performance remotely from Sacramento
via a network connection. The system will have a text-based display and various

diagnostic routines to enable its performance to be thoroughly characterized.
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V. FY93-95 Pro_rammatics
This section presents an expanded work breakdown structure,
completion of the FY93-95 SDV task.

V.II. Expanded Work Breakdown Structure

and a schedulefor

Subtask 1.0 Project Plan
Aerojet shall deliver one copy-ready document to NASA LeRC for unlimited distribution,
summarizing work done to date on real-time sensor data validation tasks under the
Development of Life Prediction Capabilities program. The report will cover all important
technical results, the viability of using analytical redundancy for SDV, the adequacy of
modelsdevelopedtodateforperformingSDV on theSSME, andresultsofvalidationtests.
The PV-Wave and C procedures used to create the models, and the schedules, milestones
and expanded work breakdown structure of planned FY93-95 activities will also be
delivered to NASA LeRC.

This task will be completedupon acceptance of this report.

Subtask 2.0 Generation of Requirements
Aemjet shall define the detailed requirements for the sensor data validation software. These
requirements wiU include: a final list of sensors to be validated (provided by NASA LeRC);
a table describing the accuracy and reliability tNIean-T'tme Between Failure) of each sensor
to be validated; and specification of the maximum acceptable false alarm and missed
detection rates for the system. From this information, the following will be derived and
specified: the default model residual threshold, the minimum number of relations required
per sensor, and the multi-cycle decision strategy. A list of the SSME test firings to be used
for software development and validation will be specified by NASA LeRC. These
requirements and specifications will be documented and delivered to NASA LeRC for
approval.

Subtask 2.1 Document MTBFs for All Sensors to be_Validated

APD will iden ".ti_ and document, either via in-person interviews, official documentation, or
telecons, the reliability of all SSME sensors on the final list provided by NASA LeRC.
Whenever possible the refiabilities shall reflect the operationalreliabilities of the sensors,
that is, hours of SSME hot-fire time between failure (where a failure is any incident which
causes the controller to fail to receive an intended engine measurement within the stated
accuracy of the sensor involved).

Subtask 2.2 Derivation of SDV Parameters
APD win compute the default model residual threshold, the minimum number of relations
requiredpersensor,and themulti-cycledecisionstrategybasedon sensorreliabilitydata
and designgoalsof I falsealarmper 1,000500-secondfiringsand Imisseddetectionper
100 5(D-secondfirings.

Subtask 2.3 Docurlaentation of Reouirements
AID will deliver to NASA a document describing the reliabtlities of all sensors to be
validated, the values of all SDV parameters derived in Subtask 2.2, and the list of
development and validation test firings to be used.

Subtask 2.0 Deliverables
The document produced in Subtask 2.3 will be delivered to NASA LeRC by the completion
of this task.
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_;ubtask 3.0 Algorithm Development & Verification
Aerojet shall perform the empirical modeling of SSME test firing data required to develop a
robust sensor validation capability as specified in the requirements (e.g., the development
of multi-parameter regression models as indicated by the FY92 Sensor Validation task).
This modeling will be performed on an as-needed basis using 50 test firings, based on the
restdts of Subtask 2.0 and previous modeling efforts. Advanced analytical redundancy
models, such as neural networks, will be included and evaluated as directed by NASA.
Aerojet shall integrate characteristic, empirical, and advanced models into a sensor
validation network capable of meeting the confidence level specified in the requirements.

A utility program will be written to automate fine-tuning of the residual thresholds to
provide the maximum possible sensitivity without an unacceptable false alarm rate.
Sensitivity is evaluated by running a simulation in which one sensor value is allowed to
drift while alI others remain nominal, and noting the point at which the system disqualifies
the drifting sensor. The results of these sensitivity tests will be documented. Another u'uli.ty
program will be written and run to compute the biases used on the above 50 datasets, tins
information will then be used to set the bias limits. Bias limits for each relationship in the
sensor validation network shall be reported. Aerojet shall deliver to NASA LeRC a
complete description of each model used in the SDV network. Thresholds and bias limits
for each model shall be included as well as information regarding the data used for model
and threshold development. If different thresholds are used during mainstage and power-
level transitions, this will be noted and both will be given.

Subtask 3.1 Interface Requirements for Advanced Models
APD will document the interface requirements for advanced analytical redundancy models,
and deliver these requirements to NASA LeRC. Advanced models will have access to
sensor values from the current and up to. four previous controller cycles, descriptors
specifying the current engine state (including power level and lockup status), and clock
variables indicating time since start, and time since start of the current engine state.
Advanced models supplied by NASA must conform to the interface requirements to be
integrated into the final SDV system.

Subtask 3.2 Validation Network Analysis Tool Implementation
A utility program will be developed which reads in a textual representation of a validation
network and automatically outputs a report which describes: the degree of coverage for
each sensor in the network (i.e., the number of relations it is involved in); the degree of
overlap between every pair of sensors in the network (in terms of how many relations they
share); the ability of the system to uniquely identify single sensor failures for each sensor m
the network; ability to validate all other sensors following a single sensor failure for each
sensor in the network; and tabulations of relations by sensor and by cardinality. The
reports output by this program will be used to guide the development and refinement of the
network.

Subtask 3.3 Threshold Tunin_ Tool Implementation
A utility program willbe devdoped which tests the false alarm rate of the SDV system, by
running it against several nominal test firings and noting the number of times every pair of
relations validating a particular sensor fail at the same time. A second utility will be
developed to test the sensitivity of the SDV system via drift tests. Results fi'om these
programs will be used to automate tuning of the model thresholds. Thresholds wRl be
derived for steady-state and transient operating modes.

Subtask 3.4 Bias Tuning Tool Implementation
A utility program will be developed which derives the bias limits for each model based on
analysis of the training test data.
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Subt_sk 3.5 Hard Failure Threshold Tuning Tool Implementation
A utility program will be developed which derives the maximum allowable excursion each
redline sensor can make in two consecutive samples under nominal and anomalous
operating conditions. This information will be used to set the hard-failure threshold limits.

Subtask 3.6Data FilePreparation

APD willestablisha libraryof the 50 trainingand 50 testdata,setsrequiredfor the SDV

task.All datasetsmay be storedina compressed format,and the trainingdatasctsmay be
storedin a reduced format forease of handling. Software willbe implemented tofacilitate

automaticaccessof thedataby thevarious utilityprograms.

Subtask 3.7 SDV Model & Network Development
AID willutilizetheutilitiesdescribedabove todevelop arobustsensorvalidationcapability

as specified.New models willbe developed as needed in order to meet the error-rate

objectivesspecifiedintherequirements.

Subtask 3.8 Test & Intem'ation of Advanced Models

Advanced models supplied by NASA LeRC will be evaluated for possible inclusion into
the SDV network. Evaluation shall consist of determining the added coverage to sensors in
the network, and the increase in system sensitivity possible without generating false alarms
on the training datasets. After reporting these results to NASA LeRC, APD will, at NASA
LeRC's direction, integrate the models into the final SDV system.

Subtask 3.9Documentation

APD willdocument allmodels and associatedparameters used inthe f'malSDV network.

The performance of the final network (sensitivity and false alarm rates) will also be
documented and delivered to NASA LeRC.

Subtask 3.0 Deliverables

The document produced in Subtask 3.9,in addition to the documented source code for all
utilityprograms,willbe delivered to NASA LeRC by thecompletion of this task.

Subtask 4.0 Software Develooment and Test
After receipt of all available documentation describing the PC hardware and software
located at NASA MSFC for reading TI'BE data in real-time, Aerojet shall produce and
deliver to NASA LeRC detailed specifications for the sensor validation software. After the

specifications are approved by _ASA LeRC, Aerojet shall design, develop, and module
test the complete sensor validation software system to be used at the TrB site. The sensor

validation system win include a text-based user interface with real-time dis_.lay.s indicating
the stares of the system and highlighting any failed sensors. The system will also have the
capability of archiving data including: samples from selected sensors (e.g, MCC PC); times
of sensor failures or near-failures (e.g., one-cycle failures); and selected diagnostic
information such as whether a particular model holds or not on each engine cycle. The
system will have the capability of being executed and monitored remotely from the
contractor's site.

Subtask 4.1 Software S_ecifications
APD shall produce and deliver to NASA LeRC software specifications for the SDV system
to be installed on the PC at the TrB site.

SubtasL4.2 Core Validation System
APD shall design, implement, and module test the core SDV system software on a PC
platform.
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Subtask 4.3 Data Interface

APD shall design, implement, and module test routines to access data fed from the TrB
blockhouse in real time on a PC platform.

Subtask 4.4 User Interface

APD shall design, implement, and module test routines to display (via a text-based display)
and log system status and error messages on a PC platform. This software will feature real-
time displays indicating the status of the system and highlighting any failed sensors. The
software will also have the capability of archiving data including: samples from selected
sensors (e.g, MCC PC); times of sensor failures or near-failures (e.g., one-cycle failures);
and selected diagnostic information such as whether a particular model holds or not on each

engine cycle.

Subtask 4.5 Remote .Operation
APD shah design, implement, and module test routines to allow personnel at APD's
Sacramento facility and at NASA LeRC to configure, run, monitor, and extract results from

theSDV system installedattheTrB facility.

Subtask 4.6 Integration
APD shah integrate all software routines into the final SDV system on a PC platform,

compatible with the 486 PC at the TI_E facility.

Subtask 4.0 Deliverables
The software specifications produced in Subtask 4.1, in addition to the documented source
code for all software developed, will be delivered to NASA LeRC by the completion of this
SubtasE

Subtask $.0 Verification and Validation

Aerojet shall install and test the sensor validation software on the PC located at the TFB
site. All functions of the software shah be tested with TFBE data playbacks. The remote
execution function shall be tested to ensure that Aerojet is able to control and evaluate

execution of the system from computers at Aerojet Propulsion Division in Sacramento,
Califa'nia.

Aerojet will support the validation of the SDV system through a combination of at least 20
playback live TrBE firings via remote operation from Sacramento.

Subtask 5.1 Installation and Standalone Tests

APD will install the SDV system on the 486 PC at the TTB facility. The software opera..tion
will be verified through stand-alone system tests. The remote operation capability will be
tested and verified.

Subtask 5.2 TrBE Playback Tests
APD will validate the operation of the SDV through successful on-site monitoring of at

least one playback of TTB firing dataat the TFB facility.

Subtask 5.3 TFBE Validation Tests

Aerojet will support the validation of the SDV system through a combination of at least 20
playback or live TrBE firings via remote operation from Sacramento.

Subtask 5.0 Deliverables

APD will deliver a docun_nt summarizing the results of all five and playback TrBE tests
of the SDV system by the completion of this Subtask.
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Subtask 6.0 Documentation & Deliverables
Aerojet shall deliver to NASA LeRC final specification, source code and data flow
diagrams for the delivered sensor validation system. Aerojet will also deliver a user's
manual for the system installed at TrB. A Final report documenting the development
activities and functionality of the sensor validation system and the results of the validation
tests will be prepared and delivered to NASA LeRC. Presentation of these results will be
made at NASA LeRC and at NASA MSFC. Recommendations for continued sensor
validation system development, including requirements for developing a flight-capable
system, will be made and delivered based upon the demonstrated capabilities of the SDV
system.

Subtask 6.1 Users Manual
AID shall deliver to NASA LeRC a user's manual for the software installed at the TrB
site. The manual shall cover all aspects of the system's operation including remote
operation procedures.

$_btask 6.2 Software Documentation
AID shall deliver to NASA LeRC documentation for all developed software, including
documented source code, flow charts, and design documents.

Subtask 6.3 Hn_ Re_Ix_rt
APD shall deliver to NASA LeRC a f'mal report describing the development activities,
results of the TFB validation tests, and suggestions for future work.

Subtask 6.4 Presentations
Presentation of the results documented in the final report will be made at NASA LeRC and
at NASA MSFC.

Subtask 6.0 Deliverables
APD shall deliver the documentation produced in Subtasks 6.1 - 6.3 to NASA LeRC by the
completion of this Subtask.

Subtask 7.0 (Ontion 1)
At the discretion of the NASA LeRC Task Manager, the sensor validation system will be
extended to monitor approximately 25 of the 97 sensors in Attachment A during the startup
transient. The software will be configured so as to provide continuous coverage of these 25
sensors from engine start until shutdown. Parameter models and model thresholds will be
provided to Aerojet by NASA LeRC. Aerojet shall evaluate the sensitivity of these models
with the same 50 training test firings used for mainstage model development and shall
integrate these models into the sensor validation system. The results of the sensitivity test
shall be documented and delivered. The same 50 test firings used to validate the mainstage
portion of the system will be used to validate the sensor validation system during the start
transient. System performance will be documented and delivered as previously described
for mainstage.
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Subtask 8.0 (Ontion 2)
At the discretion of the NASA LeRC Task Manager, the sensor validation system will be
extended to monitor approximately 25 of the 97 sensors in Attachment A during the startup
transient. The software will be configured so as to provide continuous coverage of these 2.5
sensors from engine start until shutdown. Aerojet shall develop parameter models and
model thresholds using the same 50 test firings used for mamstage model development. A
complete description of each model used in the SDV network shall be delivered; as well as
information regarding the data used for model and threshold development. Aerojet shall
evaluate the sensitivity of these models with the same 50 test fh'ings used for mainstage
model development and shall integrate these models into the sensor validation system. The
results of the sensitivity tests shall be documented and delivered. The same 50 test firings
used to validate the mainstage portion of the system will be used to validate the sensor
validation system during the start transient. System performance will be documented and
delivered as previously described for mainstage.

V.2. Schedule & Milestones
Figure 23 outlines the projected schedule for the FY93-FY95 Real-Time SDV task.
Optional subtasks 7.0 and 8.0 were intentionally omitted from the schedule. A decision
regarding their implementation should be made by May 1, 1994, at which time tasks 3.8 -
6.4 will be delayed (into FY95) to accommodate.
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:" .Binary relation, Linear fit coefficients. (Page 1 of 4)

PidY PidX R.Mean R.Sigma CO C1
• m_mo _mo

260 659 -1.98E+01 6.19E+02 -6.2050E+03 4.3120E+02

260 17 -2.07E+01 4.82E+02 1.3118E+04 4.9001E+00

260 133 -4.93E+00 3.13E+02 1.3082E+04 1.3620E+00

231 42 -3.00E+00 6.30E+01 6.1976E+02 1.3366E+01

231 260 -2.34E+00 6.54E+01 9.7958E+02 2.0530E-02

231 133 -2.11E+00 6.52E+01 1.2568E+03 2.7374E-02

232 42 -3.04E+00 4.63E+01 2.0918E+02 1.8859E+01

232 260 -3.12E+00 4.89E+01 6.8588E+02 2.9914E-02

232 133 -2.82E+00 5.03E+01 1.0806E+03 4.0493E-02

129 53 -3.91E-01 1.91E+01 8.6613E+01 8.8521E-01

129 371 -6.28E-01 1.53E+01 1.0620E+02 9.0918E-01

129 90 -4.35E-01 1.35E+01 3.7498E+02 6.7443E-01

52 17 -!.92E+00 1.10E+02 -1.5935E+02 1.3971E+00

52 436 2.57E-01 7.43E+01 -1.6568E+02 1.4161E+00

52 457 1.12E+00 7.24E+01 -8.1476E+01 1.2889E+00

53 129 2.86E-01 2.15E+01 -9.6376E+01 1.1292E+00

53 371 -3.68E-01 2.47E+01 2.3347E+01 1.0267E+00

53 52 -I.06E+00 4.92E+01 1.7741E+01 5.5873E-01

480 334 1.83E+00 3.66E+01 "4.4059E+02 1.3893E+00
480 328 1.83E+00 3.66E+01 -4.4059E+02 1.3893E+00
480 59 1.02E+O0 4.27E+01 -2.0223E+02 7.3421E-01

58 480 -I.60E+00 8.25E+01 1.6447E+02 9.5497E-01

58 59 -2.66E-01 8.74E+01 -3.1200E+01 7.0147E-01

58 52 -8.55E-01 1.14E+02 -7.9255E+02 9.7320E-01
42 175 -1.96E-03 1.38E-01 -I.1274E+00 1.0204E+00

42 764 2.09E-02 1.08E+00 2.4777E+01 1.6021E-03

42 133 1.10E-02 1.27E+00 4.5958E+01 2.1634E-03

203 32 1.73E-01 7.66E+00 7.9614E+01 9.4303E-03

203 93 -3.94E-01 9.64E+00 2.4492E+00 1.0891E+00

203 764 -2.27E-01 9.35E+00 1.2645E+02 2.8747E-03

1212 334 1.70E-01 3.56E+01 7.1748E+02 1.2758E+00

1212 129 9.52E-01 4.73E+01 1.3358E+01 1.8906E+00
1212 480 -1.69E+00 5.29E+01 1.1263E+03 9.1746E-01

133 371 -4.87E+00 1.18E+02 4.8923E+02 4.7242E+00

133 17 -I.!0E+01 3.15E+02 4.4807E+01 3.5933E+00

133 764 1.99E+00 1.86E+02 -9.4030E+03 7.2917E-01

17 436 1.35E+00 3.74E+01 -2.3813E+00 1.0153E+00

17 52 1.32E-01 7.46E+01 1.1716E+02 7.1756E-01

17 764 1.40E+00 7.99E+01 -2.6240E+03 2.0312E-01

436 17 -1.42E+00 4.41E+01 5.9125E+00 9.8618E-01

436 52 -I.01E+00 5.24E+01 1.2050E+02 7.0568E-01

436 764 1.44E+00 6.99E+01 -2.5855E+03 2.0010E-01

32 764 -1.12E+01 2.29E+02 4.4859E+03 3.1815E-01

32 722 -I.04E+01 2.79E+02 8.6624E+03 4.3172E-01

32 436 -1.44E+01 2.20E+02 8.6901E+03 1.5679E+00

30 129 -1.99E+00 6.71E+01 1.7876E+03 1.0905E+00

30 59 -2.89E+00 6.40E+01 2.3223E+03 3.8856E-01

30 1212 -2.40E+00 6.81E+01 1.7883E+03 5.7527E-01
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PidY

233

233

233

234

234

234

24

24

24

21

21

21

176

176

176

40

40

4O

18

18

18

209

209
209

93

93

93

1951

1951

1951

90

90
90

59

59

59

659

659

659

211

211

211

91
91

91

225

225

225

327
327

327

.Binary relation, Linear fit coefficients. (Page 2 of 4)

PidX R.Mean R.Sigma C0 C1

30 1.33E+00

480 -I.05E+00

40 2.81E-01

30 1.12E+00

480 -7.10E-01

40 2.57E-01

129 -5.71E+01

53 -5.83E+01

722 -5.47E+01

93 -i. 75E-02

30 i. 69E-02

40 -i. 77E-02

30 2.44E-02

480 -8.59E-03

129 -1.21E-03

30 1.88E-02

129 -9.07E-03

480 -1.68E-02

225 1.91E-01

1017 5.43E-02

21 4.18E-01

327 -9.40E-02

858 1.68E-01

234 -2.06E+00

21 5.70E-03

40 -1.36E-02

30 4.56E-02

990 -2.28E-02

91 1.45E-02

819 -1.46E-02

328 1.08E-02

129 5.78E-01

480 -I.51E+00

480 -1.88E+00

90 5.93E-01

328 7.53E-01

764 1.69E-02

722 1.10E-02

52 -2.42E-02

231 -1.97E-01

232 1.41E-01

175 -7.03E-01

990 -2.26E-02

1951 1.35E-01

211 1.08E-01

1017 -5.15E-04

1021 6.28E-03

18 -1.79E-01

129 2.06E+00

334 1.33E+00

480 3.63E-01

5.10E+01 -1.4766E+01 2.6332E-01

5.96E+01 6.2909E+02 1.3880E-01

4.97E+01 -2.4230E+02 2.3993E+01

4.64E+01 -6.9329E+01 2.7362E-01

5.33E+01 5.9808E+02 1.4443E-01

4.24E+01 -3.0831E+02 2.4967E+01

1.57E+03 -4.8986E+01 6.2460E-01

1.58E+03 -8.7063E-01 5.5505E-01

1.57E+03 -4.5360E+01 1.2042E-01

8.46E-01 3.1736E+01 7.8683E-01

2.56E+00 1.2681E+02 1.2964E-02

2.47E+00 1.1417E+02 1.2033E+00

1.39E+00 1.1929E+01 1.0457E-02

1.37E+00 3.7404E+01 5.5188E-03

1.45E+00 3.0733E+01 1.1367E-02

1.39E+00 1.0920E+01 1.0693E-02

1.47E+00 3.0123E+01 1.1632E-02

1.38E+00 3.6940E+01 5.6492E-03

1.84E+01 -3.6711E+00 1.0352E+01

2.03E+01 2.3863E+01 1.1029E+01

1.97E+01 2.3024E+02 1.0653E+00

2.60E+01 1.9806E+02 5.0211E-02

2.43E+01 2.7952E+02 7.6803E-01
3.09E+01 2.3312E+O2 8.6073E-02

1.08E+00 -3.7547E+01 1.2565E+00

2.71E+00 1.0284E+02 1.5595E+00

2.62E+00 1.1870E+02 1.6902E-02

6.71E-01 -1.1034E+01 1.4558E-01
7.56E-01 -1.3815E+01 3.2514E-01

7.88E-01 -1.1119E+01 1.3328E-01

1.38E+01 4.0283E-01 9.9949E-01

1.99E+01 -5.5293E+02 1.4817E+00

2.77E+01 3.1915E+02 7.1907E-01

5.83E+01 2.8383E+02 1.3604E+00
7.45E+01 -3.1455E+02 1.8905E+00

7.27E+01 -3.1504E+02 1.8899E+00

1.40E+00 1

1.69E+00 4

1.96E+00 4

1.41E+01 -4

1.35E+01 4

1.45E+01 7

1.02E+00 8

1.96E+00 3

2.19E+00

2.83E-01

3.61E-01

1.32E+00

8.70E+01

8.89E+01

9.37E+01

.4823E+01 2.3099E-03

.4922E+Ol__3.1499ET03_

.6531E+01 8.0671E-03

.7988E+01 1.8014E-01

.9194E+01 1.2016E-01

.4020E+01

.6122E+00

.5978E+01

3.1310E+01
1.2148E+00

3.4968E+00

9.9661E+00

-1.9390E+02

1.9670E+02
4.2494E+02

2.2898E+00

4.3815E-01
2.4138E+00

-7.4056E-02

I.I038E+00

1.0409E+00

7.4869E-02

1.0446E+00

7.0458E-01

5.0615E-01
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.Binary relation, Linear fit coefficients. (Page 3 of 4)

PidY

457

457

457

650

650

650

819

819

819

858

858

858

951

951

951

990

990

990

1021

1021

1021

1017

1017

1017

1058

1058

1058

1054

1054

1054

1188

1188

1188

1190

1190

1190

835

835

835

764

764

764

175

175

175
722

722

722

1205

1205
1205

PidX R.Mean R.Sigma
.mmm_N

C0 C1

52

436

17

764

659

232

436

231

1951

209

951

40

211

209

1951

91

1951

1190

225
18

231

225
18

231

21

93

1190

21

93

1190
21

1951

990

233

990

93

722

436

17

659

17

133

42

764

133

371

764

17

371

17

764

-1.86E+00 5.62E+01 6.6748E+01 7.7542E-01

-1.22E+00 7.00E+01 -6.1733E+01 1.0980E+00

-3.15E+00 1.03E+02 -5.5721E+01 1.0830E+00

-1.25E+00 3.07E+01 1.8714E+02 3.1693E-03

-8.56E-01 2.98E+01 1.6523E+02 1.3845E+00

5.69E-01 3.01E+01 I.O854E+02 1.0850E-01

9.10E-02 4.55E+00 3.1860E+01 -4.9651E-03

3.39E-02 5.38E+00 8.7912E+01 -4.5901E-02

1.28E-01 4.46E+00 5.5747E+01 4.6345E+00

1.46E+00 2.27E+01 -1.6778E+02 7.2514E-01

1.94E+03 1.98E+03 -7.9473E+01 -2.6943E+02

-4.27E-01 3.06E+01 1.8579E+02 -1.5994E+00

-1.69E-02 7.36E+00 5.5833E+00 4.0491E-03

8.33E-03 7.36E+00 6.5431E+00 1.1546E-04

-3.97E-03 7.36E+00 6.0043E+00 -6.1257E-02

5.61E-02 2.34E+00 -1.8480E+01 2.2000E+00

2.15E-01 4.05E+00 6.3054E+01 5.5542E+00

-5.88E-01 6.37E+00 -7.6084E+01 9.5423E-02

1.11E-02 3.06E-01 2.8014E+00 8.1476E-01

-1.20E-01 1.19E+00 1.2327E+01 5.7721E-02

-5.87E-02 6.77E-01 3.0702E+01 3.9803E-03

8.70E-03 2.38E-01 1.7168E+00 8.3921E-01

-1.31E-01 1.23E+00 1.0777E+01 6.1194E-02

-5.58E-02 6.64E-01 2.8566E+01 5.2249E-03

2.43E-02 2.38E+00 1.1720E+02 2.5016E-01

4.57E-03 2.52E+00 1.3049E+02 1.7063E-01

1.38E-01 2.78E+00 1.4905E+02 1.7657E-02

2.14E-02 2.36E+00 1.1701E+02 2.4935E-01

1.29E-03 2.50E+00 1.3023E+02 1.7014E-01

1.36E-01 2.77E+00 1.4904E+02 1.7275E-02

-1.37E-01 3.35E+01 1.8923E+02 3.0263E+00

-1.16E+00 3.86E+01 7.3597E+02 -3.6771E+00

-3.50E-01 3.74E+01 7.6758E+02 3.2966E-01

5.03E-01 5.49E+01 5.4257E+02 2.7825E-01

1.07E+00 5.75E+01 8.5214E+02 5.4148E+00

-8.27E-01 5.77E+01 1.3575E+02 3.7909E+00

-1.78E+00 6.36E+01 2.8361E+01 2.0371E-01

-3.83E+00 6.gqE+OI___2_89E+01 7.3953E-01
-5.71E+00 8.47E+01 4.7778E+01 7.2934E-01

-1.93E+01 6.05E+02 -6.2031E+03 4.3075E+02

-1.98E+01 4.49E+02 1.3093E+04 4.8965E+00

-4.06E+00 2.56E+02 1.3057E+04 1.3609E+00

1.35E-03 1.35E-01 1.1699E+00 9.7916E-01

2.34E-02 1.08E+00 2.5494E+01 1.5668E-03

1.34E-02 1.28E+00 4.6224E+01 2.1146E-03

-7.66E+00 1.10E+02 5.5275E+02 4.7008E+00
-6.05E-01 1.86E+02 -9.2833E+03 7.2534E-01

-1.47E+01 3.26E+02 1.1569E+02 3.5746E+00

-5.80E+00 1.39E+02 3.8688E+02 4.6454E+00

-1.22E+01 3.11E+02 -4.2931E+01 3.5318E+00

1.01E+00 1.97E+02 -9.3276E+03 7.1663E-01

6O



Pid¥

.Binary relation, Linear fit coefficients. (Page 4 of 4)

PidX R.Mean R.Sigma CO C1

371 129 5.36E-01

371 722 1.30E+00

371 53 1.51E-01

328 334 -1.31E-07

328 480 -1.49E+00

328 129 5.73E-01

334 328 -1.31E-07

334 480 -1.49E+00

334 129 5.73E-01

1.68E+01 -1.1456E+02

2.33E+01 -1.1577E+02

2.40E+01 -1.9540E+01

4.00E-06 8.1380E-05

2.63E+01 3.1971E+02

2.41E+01 -5.5152E+02

4.00E-06 8.1380E-05

2.63E+01 3.1971E+02

2.41E+01 -5.5152E+02

1.0992E+00

2.1263E-01

9.7305E-01

1.0000E+00

7.1927E-01

1.4818E+00

I.O000E+00

7.1927E-01

1.4818E+00

61



Binary reLatlm, cubic fit coefficients. (Page 1 of 3)

260 659 1.35E+01 5.31E+02 5.5961E+04-2.0192E+03 3.1481E+01-1.3229E-01
260 17-2.52E+01 5.13E+02-2.8711E+04 3.8019E+01-8.5_7E-03 7.2206E-07
260 133-1.79£+01 2.82E+02-4.3Tr6E+04 1.4238E÷01-9.5189E-04 2.3059£-08
231 42-3.02E+00 6.12£+01 -2.3029E÷03 1.2953E+02-1.5203E+00 6.5610E-03
231 260-1.56E÷00 6.24E+01 -4.5641E+03 5.5106£-01-1,6766E-05 1.7516E-10
231 133-2.33E+00 6.07E+01 -5.9086E+03 1.6615E+00-1.2170E-04 2.96%E-09
232 42 -3.18E+00 4.4_+01 1.6693E+03 -6,9259E÷01 1.5663E+00 -8.6506E-03
232 260-1.14E+00 4.60E+01 -2._93E+03 3.0338E-01-7.7762E-06 7.2032E-11
232 133-2.05E÷00 4.1_8E+01 -5.8292E+03 1.5998E+00 o1.1/_83E-04 2.7702E-09
129 53-2.1_-01 1.87E+01 7.8807E+01 8.3572E-01 3.8660E-05-6.8499E-09
129 371-8._E-01 1.t_E+01 -2.0499E+02 1.21_E÷00-9.4%5E-05 9.4072E-09
129 90-5./_E-02 1.12E+01-5.0735E+02 1.4235E+00-2.0321E-04 1.7799£-08
52 17-4.51E+00 1.14E+02 1.0966E+02 1.3020E+00-9.0520E-06 3.7503E-09
52 436-1.70E+00 7.69E+01 -5.7425E+02 1.8%0E÷00-1.6753E-04 1.8134E-08
52 457 3.84E÷00 6.23E+01 2.0724E+03-$.2601E-01 4.9638E-04-4.4053E-08
53 129 1.76E-01 2.1(R+01 1.0433E÷02 9.5281E-01 4.3807E-05-2.5_3E-09
53 371-8.22E-01 2.49E+01-1.6735E÷02 1.2470E+00-8.2800E-05 1.0171E-08
53 52 1.10E÷00 4.16E÷01 2o3596E÷03-1.0039E+00 3.3798E-04-2.3692E-08
480 334 1.10E+00 3.30£+01 5.1002E÷02 6.5828E-01 1.7164E-04-1.2169E-08
480 328 1.10S÷00 3.30£+01 5.1002E÷02 6.5828E-01 1.7164E-04-1.2169E-08
480 59 9.86E-01 d;.21E+01 7.3474E÷02 3.1814E-01 5.7192Eo05-2._76E-09
58 480-4.86E+00 8.29S+02 3.3921E÷01 1.0747E÷00-3.3212E-05 2.8986E-09
58 59-3.0_E+00 8.9_E+01 5.3222E_02 4.9761E-01 1.9042E-05-2._A_E-10
58 52-1.33E+00 1.01E+02 6.8227E÷03-3.6992E+00 9.3629E-0_-6.140_E-M
42 175 3.55E-04 1.33_-01 1.1290E_01 4.7583E'01 7.8942£-03-3.7508_'05
42 764-2.29_-02 9.49E-01 -1.94571£+02 2.451_-02-7.8676E-07 8.8840£-12
42 133-7.68E-02 1.19E+00-1.7709C-o_ 5._724E-02-3.9676E-06 9.8951E-11
203 32-&.97E-01 7.23E+00-5.1272E÷02 1.4700S-01-1.0_5E-05 2.6027E-10
203 93 4.29S-03 9.68£+00 5.3741C-_2-9.4.565E4_)0 6.5840E-02-1.3233E-0_
203 764-1.22S-01 9.12E._0-5.6975E÷02 7.0941E-02-2.1963E-06 2.34t3E-tl
1212 334-3.76E-01 3.5/,E+01-6.437'4E÷02 2._73E+00-3.22K1E-04 2.89_7E-03
1212 129 9.71E-01 &.69E+01 1.1416E_3 5.80_0E-01 4.9687E-04-6.1768£-08
1212 480-6.29E-01 _.85E+01-4.7243S+02 1.9458_÷00-2.0r_2s-0_ 1.2870E'08
133 371 o6.24E÷00 1.19S+02 04.6847E_02 5.8328E+00-4.1958E-0_ 5.1964E'08
133 17 2.33E+00 2.66E+02 1.098_E+0_-5.9509E+00 2.713/,E-03-2.5149E'07
133 764 1.56E÷00 1.08_+02 4.1221E4_-4.1270£+00 1.3376E-0_-1.6092E-09
17 436 1.15E÷00 3.72E÷01-3.6763E+02 1.3238E+00-8.4596E-05 7.5718_-09
17 52 1089E÷00 7.51E+01 2.9022E+02 5.3860E-01 5.0398E-05 0_.2065E-09
17 76/* 2.40E+00 7.69E+01 9.1963E+03 "8.8138E'01 3.2739_-05-3.;574E'10
436 17 "9.37E'01 _.30S+01 5.6335E+02 5.1630E-01 1.2890E-04-1.15_7E-08
436 52 7.75E-01 5.26£+01 6.9704E+02 2.7"/27E-01 1.0047E-0_-7._839E-09
436 764 1.17E+00 5.20E+01 9.2676E+03-8.8859S'01 3.2898£'05-3.2764E'10
32 764 "1.37E÷01 2.09_+02 "2.9704E+0_ 3.8171E+00 "1.1790E-0_ 1.3092E'09
32 722-1.92E+01 2.27E+02 °3.8603E_ 1.1361S+01 "8.2564E-04 2.0426E'08
32 436-3.32E+01 1.7¢E+02-3.0802E4_ 3._97E÷01 "8.9643E-03 7.9935E'07
30 129-3.94E+00 6.42£+01 "3.9698E+03 7.7278£+00 "2.4%5E-03 3.0717E'07
30 59-7003E+00 6.29E+01 "1.9324E+03 2.5453E+00 "3.5216E'0_ 1.8700E'08
30 1212-5.85E*00 6._E+01 "4._350E+03 4.32_E+00 "7.358_E'0_ 4.7308E-08
233 30 2.20E÷00 4.76E+01-1.7848E+03 1.7528E+00-3.8315E-0_ 3.1888E-08
233 480-3.29E+00 5.93_+01 1.5568E÷02 5.1930S-01-9.7529E-05 8.0431S-09
233 40 02.62E-01 5.0_+01 2._817E+03-1.3841E÷02 3.113_E+00-1.933_-02

62



Binary relation, cubic fit coefficients. (Page 2 of 3)

234 30 1.03E+00 4.23E+01 -2.1335E+03 2.0427E+00-4.7224E-04 4.0038E-08
234 480-3.60E+00 5.30E+01 9.0938E+01 5.7480£-01-1.1620E-04 1.0024E-08
234 40-1.20E+00 4.19E+01 2.3131E+03-1.252_+02 2.7935E+00-1.6927E-02
24 129-5.61E÷01 1.57£+03 -9.9506E+02 1.7355E+00-4.2692E-04 5.3792E-08
24 53-5.93E+01 1.58E+03 -2.2450E+03 3.0496E+00-9.0553E-04 1.0751E-07
24 722-5.50E+01 1.$7E+03 -1.9150E+03 5.5106E-01-3.2413E-05 7.9940E-10
21 93-2.15E-02 5.52E-01 -1.2234E+02 3.1551E÷00-1.1912S-02 1.9630E-05
21 30-8.44E-02 1.61E+00 -6.0439E+02 5.0427E-01-1.0898E-04 7.9870E-09
21 40 1.31E-01 1.47E*00 -1.9252E+02 1.4241E+01-1.7755E-01 7.6450E-04
176 30-7.89E-02 1.18E+00 -2.2098E+02 1.8863E-01-4.4176E-05 3.5617E-09
176 480-1.48E-01 1.16E_)0-2.4065E+01 5.6079E-02-1.3323E-05 1.1271E-09
176 129 -1.19E-01 1.14E+00 -1.2116E+02 2.0534E-01 -8.0574E-05 1.0889E-08
40 30-8.30E-02 1.16E+00 -2.1019£+02 1.8136E-01-4.2601E-05 3.4525E-09
40 129-1.26E-01 1.17E,00 ;1.1490E+02 1.9767E-01-7.7579[-05 1.0519E-08
40 480-1.55E-01 1.19E÷00-2.2246E+01 5.4551E-02-1.2936E-05 1.0977E-09
18 225 5.98E+00 2.06E*01 4.1932E+04-3.9638E÷03 1.1780E+02-1.1179E+00
18 1017 2.75E*01 4.50E+01 2.8680E÷05-3.0960E+04 1.0455E+03-1.1295E+01
18 21 3.26E-01 2.01E+01 2.6417E+02-5.0969E+00 6.5234E-02-1.7725E-04
209 327-7.07E_)0 3o12E+01 -2o7263E+03 3.7467E+00-1.5232E-03 2.0500E-07
209 858-1.13E*00 2.24E+01 2.6740E+02 2.2443E+00-2.8867E-02 1.4446E-04
209 234 1.90E*01 4.49E+01 2.9239S+03-9.1514E+00 9.7130£-03-3.2205E-06
93 21 5.04S-02 7.31E-01 2.5626E+02-4.0273E+00 3.0824E-02-5.8718E-05
93 40 2.20E-01 1.89£+00 -1.1637E÷02 9.6629E+00-8.6911E-02 2.1987E-04
93 30-6.69E-02 1.82E+00 -5.9377E+02 5.0027E-01-lo0822E-04 8.0011E-09
1951 990-7.19E-02 6.12E-01 -9.5508E+00-1.3007E-01 1.2752E-02-1.6282E-04
1951 91-5.40E-02 6.24E-01 3.6509E+00-2.7187E+00 1.6642E-01-2.8464E-03
1951 819-4.99E-02 7.29E-01 -8.1444E+00-3.0334E-01 9.6633E-03 1.6255E-04
90 328-2.81E-02 1.39E+01 -2.8534E+02 1,2703[*00-8.3125E-05 8.3040E-09
90 129 1.80E-02 1.64E+01 1,4613E+03-7,2088E-01 7.8002E-04-9.0049E-08
90 480-6.14E-01 S._*01 -2.6407E+02 1.0769E+00-6.6233E-05 3.6633E-09
59 480-1.18E÷00 7.31E÷01 -3.2644E+02 1.6632E+00-3.4177E-05-2.3635E-10
59 90-4.40E-01 7.59E+01 1.2716E÷03 3.5198E-01 4.8587E-04-4.9441E-08
59 328-2.63E-01 7.37E*01 6.6017E+02 9.4140f.-01 2.9921E-04-3.0661E-08
659 764-1.58E-02 1.40E4_0 -1.1128E÷02 1.5649£-02-4.6284E-07 $.2739E-12
659 722-6.15E-02 1.74E+00 -1.7074E+02 5.3144E-02-3.7858E-06 9.3875E-11
659 52-1.09E-01 2.08E+00 -9.8978E+01 9.5599E-02-1.71ME-05 1.1026E-09
211 231-6.49E÷00 1.86E,01 -1.2539E+03 3.3092E+00 '2._26E-03 6.3597E-07
211 232-1.01E÷00 1.36E+01 -7.9941E÷02 2.0214E+00-1.3739E-03 3.2295E-07
211 175-6.72E-01 1.44E+01 -8.7893E+02 4.6998E,01-6.Tr26E-01 3.3387E-03
91 990-7.17E-02 1.00E÷O0 9.7311E+00 1.4153E-01 2.3244E-02-4.8756E-04
91 1951 -3.43E-01 1.39E+00 -5.057.5E+0i-3.1115E÷01 -4.2091E+00-1.7238E-01
91 211 6.57E-02 2.24E÷00 -1.4748E+02 2.1704E+00-9.2430E-03 1.2508E-05
225 1017-4.81E-01 9.27E-01 -1.1610E+04 1.252.?.E+03-4.2104E_01 4.532'rE-01
225 1021 1.23E-01 3.90E-01 1.4449E+03-1.5466E+02 5.2620E+00-5.6936E-02
225 18 1.10E,00 8.79E-01 3.2863E÷02-3.0218E+00 9.3182E-03-8.9316E-06
327 129 3.17E+00 8.80E÷01 1.3403E÷03-9.1808E-01 8.1771E-04-1.1088E-07
327 334 2.9_+00 8.91E+01-1.7979E+02 8.950TE-01-6.1215E-06-4.3803E-09
327 480 4.26E+00 9.26E+01 9.4709£+01 5.7455E-01 2.9481E-05-5.8128E-09
457 52-3.43E+00 5.33E+01 -1.3671E+03 1.7357E+00-2.08_3E-04 1.4690E-08
457 436-4.07E+00 7.00E+01 -2.0691E÷03 3.0080E÷00-5.8S64E-04 5.7880E-08
457 17-8,30E*00 1,10E+02 -1.384_+03 2.4002E+00-4.1602E-04 4.1959E-08
650 764-1.17E+00 3.02E+01 -5.2188E+02 6.2184E-02-1.5675E-06 1.3148E-11
650 659-5.72E-02 3.04E+01 -2.0071E+02 8.4735E+00-1.4111E-02-2.0992E-04
650 232-2.17E+00 3.00E+01 -3.87S2E*02 1.0547E+00-6.0285E-04 1.2868E-07
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,O|rmr_/ relation, cubic fit coefficients. (Page 3 of 3)

P|ciY Pick R.Meon R.S|gma CO C1 C2 C3

819 436 2.22E-01 4._E÷O0 2.47_E+02-1._74E-01 5.1_-05-4.6515E-I_
819 231 1.13£-01 5.45E+00
819 1951 9.51E-01 7.18E+00
858 209 7,86[-01 1.92E+01
858 951-6.65E+07 7.47E+05
858 40 1,08E+01 3.56E+01
951 21t-7.66E-05 7.36E+00
951 209 1.561[-02 7.35E+00
951 1951-3.84E-02 7.39£+00
990 91 1.95E-02 2.21E+00
990 1951-1.26E+00 3.77E+00
990 1190-4.71E+00 1.14E+01
1021 225-1.22E-01 3.07E-01
1021 18 -1.01E-01 1.13E+00
1021 231-3.11E-01 5.41E-01
1017 225 7.43E-02 1.70E-01
1017 18 1.28[-01 3.43E-01
1017 231-1.92E-01 4.38E-01
1058 21-3.06E-02 7,161[-01
1058 93-3.40E-02 ?.20E-01
1058 1190 2.70E-01 1.i5E+00
1054 21-4.20E-02 6.98E-01
1054 93-4.76E-02 7.03E-01
1054 1190 2.64E-01 1.14E+00
1188 21-3.31E+00 3.29E+01
1188 1951 -1.18E+01 4.04E+01
1188 990 3.03E+00 3o33E+01
i190 233-1.66E+01 6.464[+01
1190 990 S.31E+O0 6.00E+01
1190 93 3.85E-01 5.86E+01
83S 722 3.82E-01 6.31E+01
835 636-4.19E+00 6.63E+01
835 17-6.31E+00 8.02E+01
764 659 1.46[+0t 5.12E+02
764 17-2.25E+01 4.76E+02
764 133-1.73[+01 2.17E+02
175 42 6.23E-05 1.30E-01
175 764-1.96E-02 9.35E-01
175 133-7.4SE-02 1.19E+00
722 371 -1.14E+01 1.09E+02
722 764-2.121[+00 1.01E+02
722 17-1.86E+00 2.691[+02
1205 371-7.90E+00 1.41E+02
1205 17 3.35E+00 2.62E+02
1205 764 8.18E-01 1.11E+02
371 129 7.50E-01 1.64E+01
371 722 1.99E4_)0 2.35E÷01
371 53 6.31E-01 2.42[+01
328 334 3.47E-04 1.94E'04
328 /80-2.68E-01 2.24E÷01
328 129 1.82E-01 2.071[÷01
334 328 3.471[-04 1.94E-04
334 480-2.68E-01 2.24E+01
334 12 1.82E-01 2.071[+01

-4.9176E+02
- 1.8709£+01
3.9170E+02

- 1.7269£+05
2./_81E+03

"2.2714E+01
o1.8438E+01
7.96171[-01

-5.5124E+00
-1.4806E+02
"6.1933E+02
-2.4361E+03
-2, 7493E+02
-2.0728E+02
-5.5525E÷02
-7.1942E+01
-1.5554E+02
-6.0038E+02
-6.2255E+02
-4.17/_E+02
-6.7991E+02
-6.3731E+02
-4.2017E+02
-7.3344E+03
-3.1135E+03
7.21071[+02

-3.1558E+03
7.7086E+02
4.18_+03

- 1.0255[+03
1.5548E+02
7.3972E+02
5.8636E+04

-2.6122E+04
-4.0964E+04
-9.2674E+00
-2.0151S+02
-1.8009£+02
9.6896E+02
4.3345E+04
1.2625E+04
4.1626[+02
1.1941E_)4
4.3395E+64
4.7155E+02
1./_43E+02
4.8876E+02

-5.8755E-03
-4.9303E÷01
1.9389£+03

-5.8755E-05
-4.9303E+01
1.9389E+03

1.1084E+00
-9.9403E+00
- 1.6913E+00
4.6997E+04

- 1.5689£+02
3.$844E-01
2.15801[-01

-2.1525E+00
6.8782E-01

-8.1164E+01
2.8271E÷00
2.3016£+02
2.4063E+00
4.9951E-01
5.2694E+01
6.0564E-01
3.75601[-01
1.3_02E+01
1.2271E+01
1.8851E+00
1.4214E+01
1.2566E+01
1.8964E+00
1.5667E+02

-1.3878E+03
3.6T/gE+O0
1.0417E+01
1.8602E+01

-8.0644E+01
4.1715E-01
4.7224E-01

-1.0329£-02
*2.1189E+03
3.58571[+01
1.3585E+01

-7.4935E-04 1.5923E-07
"3.1916E-02 6.9183E-02
-1.8672E-04 7.0380E-06
"5.3051E+03 4.6228E+04
3.2419£+00 "2.1413E-02

"1.4698E-03 2.0190E-06
"6.1634E-04 5.8292E-07
"2.7240E-01 - 1.15621[-02
2.3851E-02 9.7821E-04

"1 • 1513E+01 "4.9631E-01
-4.0396E-03 1.8606E-06
-6.7423E+00 6.3436E-02
-6.0037E-03 6.8780E-06
-3.3663E-04 7.5003E-08
-1.5079£+00 1.4024E-02
-1.0323E-03 4.9995E*07
-2.4401E-04 5.2847E-08
-7.6796E-02 1.4222E-04
-6.3666E-02 1.1001E-04
-2.0287E-03 7.2605E-07
-7.9555E-02 1.4812E-04
-6.5545E-02 1.1383E-04
-2.0_,4E-03 7.3270£-07
-9.%20E-01 2.0732E-03
- 1.6064E+02 -6.0727E+00
4.0670E*01 -1.6595E*02

-9.1398E-03 2.7125E-06
-4.2332E-01 1.4197E-03
5.4454E-01 -1.1173E-03

- 1.3988E-05 2.9807£-10
1.1799E-04 - 1.4230E-08
2.4156E*04 -2.4650E-08
3.2695E+01 -1.3719E-01

-7.9629£-03 6.7069E-07
-9.0300E-04 2.1857E-08

1.4152E+00-6.0123E-03 2.7398E-05
2.5210E-02-8.0957E-07 9.1205E-12
5.4913E-02-4.0219E-06 1.0026E-10
4.1943E+00 1.9786E-04-2.4852E-M

-4.3520E+00 1.6171E-04-1.7024E-09
-7.1589E+00 3.0489E-03-2._.31E-07
4.7066E,H)O-6.3951E-0S 1.2970E-08

-6.8474E+00 2.9289£-03-2.6961E-07
"4.3449E+00 1.6037E-04-1.6793E-09
4.4346E-01 2.3809E-04-2.8246E-08
1.5087E-01 4.7674E-06-1.2077E-10
3.9258E-01 2.1583E-04 -2.6161E°08
1.0000E+O0-1.5959£-09 1.5661E*13
9.1234E-01-2.5353E-05 3.772_-10

-1.2982E+00 1.00861[-03-1.1966E-07
1.0000E+O0-1.5959£-09 1.5661E-13
9.1234E-01-2.5353E-05 3.Tr28E-lO

-1.2982E+00 1.0086[-03-1.1966E-07
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Characteristic Relation

Fac Fuel Flow/ Lpfp Spd = constant

PID 1205 : Fac Fuel Flow

PID 32 : Lpfp Spd

Characteristic Curve Fit

#1. PID 1205 = cl * PID 32

#2. PID 32 = cl * PID 1205

m_m mmmmw m

Characteristic Relation

Fac LOX Flow/ Lpop Spd = constant

PID 1212 : Fac LOX Flow

PID 30 : Lpop Spd

Characteristic Curve Fit

#3. PID 1212 = cl * PID 30

#4. PID 30 = cl * PID 1212

mmmm| ! mmmm| w |m mw |mmm| mwwwmmm

Characteristic Relation

Fac Fuel Flow/ Hpfp Spd = constant

PID 1205 : Fac Fuel Flow

PID 260 : Hpfp Spd

CharacteristlcCurve Fit

#5. PID 1205 = cl * PID 260

#6o PID 260 - cl * PID 1205

mu
,m |m ||mm| m m mmmm | | |m |mw

Characteristic Relation

(Lpop Ds P - Eng Ox In P)/ (Lpop Spd)^2 = constant

PID 209

PID 858

PID 30

: Lpop Ds P

: Eng Ox In P

: Lpop Spd

Characteristic Curve Fit

#7. PID 209 = cl * PID

#8. PID 858 = cl * PID

#9. PID 30^2 = cl * PID

858 + c2 * PID

209 + c2 * PID

209 + c2 * PID

30^2

30^2

835

,. Characteristic Equations (Page 1 of 3)

66



Characteristic Relation

(Hpfp In P - Eng Fuel In P)/ (Lpfp Spd)^2 = constant

PID 203

PID 819

PID 32

: Hpfp In P

: Eng Fuel In P

: Lpfp Spd

Characteristic Curve Fit

#I0. PID 203 = cl * PID

#ii. PID 819 = cl * PID

#12. PID 32^2 = cl * PID

819 + c2 * PID

203 + c2 * PID

203 + c2 * PID

32^2

32^2

819

Characteristic Relation

(Hpfp Ds P - Hpfp In P)/ (Hpfp Spd)^2 = constant

PID 52

PID 203

PID 260

: Hpfp Ds P

: Hpfp In P

: Hpfp Spd

Characteristic Curve Fit

#13. PID 52 = cl * PID

#14. PID 203 = cl * PID

#15. PID 260^2 = cl * PID

203 + c2 * PID

52 + c2 * PID

52 + c2 * PID

260^2

260^2

203

Characteristic Relation

(Hpop Ds P - Mcc Pc)/ (Fac LOX Flow)^2 = constant

PID 90 : Hpop Ds P
PID 129 : Mcc Pc

PID 1212 : Fac LOX Flow

Characteristic Curve Fit

#16. PID 90 = cl * PID

#17. PID 129 = cl * PID

#18. PID 1212^2 = cl * PID

129 + c2 * PID

90 + c2 * PID

129 + c2 * PID

1212^2

1212^2

90

Characteristic Equations (Page 2 of 3)
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Characteristic Relation

(Mcc Cool Ds P - Lpft In P)/ (Lpfp Spd)^2 = constant

PID 17

PID 436

PID 32

: Mcc Cool Ds P

: Lpft In P

: Lpfp Spd

Characteristic Curve Fit

#19. PID 17 = cl * PID

#20. PID 436 = cl * PID

#21. PID 32^2 = cl * PID

436 + c2 * PID

17 + c2 * PID

17 + c2 * PID

Characteristic Relation

(Hpop Ds P - Lpop Ds P)/ (Lpop Spd)^2 = constant

PID 90

PID 209

PID 3O

: Hpop Ds P

: Lpop Ds P

: Lpop Spd

Characteristic Curve Fit

#22. PID 90 = ol * PID

#23. PID 209 = ol * PID

#24. PID 30^2 = cl * PID

209 + o2 * PID

90 + c2 * PID

90 + c2 * PID

Characteristic Equations (Page 3 of 3)

32^2

32^2

436

30^2
30^2

209
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_: Characteristic Curve Fit

PID 1205 = cl * PID 32

R.Mean R.Sigma C1
-2.01E+04 5.34E+02 2.2997E+00

PID 32 = cl * PID 1205

R.Mean R.Sigma Cl
8.88E+03 2.36E+02 4.2643E-n1

PID 1212 = cl * PID 30

R.Mean R.Sigma C1

-3.14E+03 1.04E+02 1.7452E+00

PID 30 = cl * PID 1212

R.Mean R.Sigma C1
1.82E+03 5.99E+01 5.6952E-01

PID 1205 = cl * PID 260

R.Mean R.Sigma C1
-9.52E+03 1.77E+02 7.2141E-01

PID 260 = cl * PID 1205

R.Mean R.Sigma C1
1.35E+04 2.42E+02 1.3679E+00

PID 209 = cl * PID 858 + c2 * PID 30^2

R.Mean R.Slgma Cl C2
1.30E+02 4.65E+00 8.8237E-01 5.5824E-06

PID 858 = cl * PID 209 + c2 * PID 30^2

R.Mean R.Sigma Cl C2
-1.45E+02 5.24E+00 1.1241E+00 -6.2909E-06

PID 30^2 = cl * PID 209 + c2 * PID 835

R.Mean R.Sigma C1 C2
-8.11E+05 8.18E+05 -1.5730E+04 1.0035E+04

PID 203 = cl * PID 819 + c2 * PID 32^2

R.Mean R.Sigma Cl C2
1.20E+02 5.99E+00 8.1231E-01 4.0383E-07

PID 819 = cl * PID 203+ c2 * PID 32^2

R.Mean R.Sigma C1 C2
-8.49E+01 4.86E+00 8.2134E-01 -3.7517E-07

PID 32^2 = cl * PID 203 + c2 * PID 819

R.Mean R.Sigma C1 C2
-2.29E+08 1.22E+07 2.1677E+06 -1.9919E+06
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Characteristic Curve Fit

PID 52 = cl * PID 203 + c2 * PID 260^2

R.Mean R.Sigma C1 C2
-I.04E+02 8.64E+01 3.8817E+00 4.3224E-06

PID 203 = cl * PID 52 + c2 * PID 260^2

R.Mean R.Sigma C1 C2
1.17E+02 1.23E+01 1.1268E-01 -4.6910E-07

PID 260^2 = cl * PID 52 + c2 * PID 203

R.Mean R.Sigma C1 C2

-7.46E+06 1.85E+07 2.2549E+05 -6.0593E+05

PID 90 = cl * PID 129 + c2 * PID 1212^2

R.Mean R.Sigma C1 C2
-3.09E+02 1.46E+01 1.2849E+00 1.0587E-05

PID 129 = cl * PID 90 + c2 * PID 1212^2

R.Mean R.Sigma C1 C2
2.97E+O2 1.15E+01 7.3620E-01 -4.9742E-06

PID 1212^2 = cl * PID 129 + c2 * PID 90

R.Mean R.Sigma Cl C2

-7.90E+06 5.46E+05 -2.3705E+04 2.8726E+04

PID 17 = cl * PID 436 + c2 * PID 32^2

R.Mean R.Sigma Cl C2
2.57E+01 4.66E+01 1.0444E+00 -6.7441E-07

PID 436 = cl * PID 17 + 02 * PID 32*2

R.Mean R.Sigma Cl C2

-4.36E+01 4.53E+01 9.3310E-01 1.1698E-06

PID 32^2 = cl * PID 17 + c2 * PID 436

R.Mean R.Sigma C1 C2

4.74E+07 5.61E+06 -2.7127E+03 4.7162E+04

PID 90 = cl * PID 209 + c2 * PID 30^2

R.Mean R.Sigma Cl C2
-1.10E+02 8.62E+01 9.6030E-01 1.4262E-04

PID 209 = cl * PID 90 + c2 * PID 30^2

R.Mean R.Sigma Cl C2
1.68E+02 5.89E+01 6.7809E-01 -9.5686E-05

PID 30^2 = cl * PID 90 + c2 * PID 209

R.Mean R.Sigma C1 C2
8.03E+05 6.04E+05 6.9911E+03 -6.5952E+03
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